This code is part of the reproducibility package for the SANER 2022 paper "Generating Clarifying Questions for Query Refinement in Source Code Search".

Related tags

Deep LearningZaCQ
Overview

Clarifying Questions for Query Refinement in Source Code Search

This code is part of the reproducibility package for the SANER 2022 paper "Generating Clarifying Questions for Query Refinement in Source Code Search".

It consists of five folders:

  • codesearch/ - API to access the CodeSearchNet datasets and neural bag-of-words code retrieval method.

  • cq/ - Implementation of the ZaCQ system, including an implementation of the the TaskNav development task extraction algorithm and two baseline query refinement methods.

  • data/ - Includes pretrained code search model and config files for task extraction.

  • evaluation/ - Scripts to run and evaluate ZaCQ.

  • interface/ - Backend and Frontend servers for a search interface implementing ZaCQ.

Setup

  1. Clone the CodeSearchNet package to the root directory, and download the CSN datasets
cd ZaCQ
git clone https://github.com/github/CodeSearchNet.git
cd CodeSearchNet/scripts
./download_and_preprocess
  1. Use a CSN model to create vector representations for candidate code search results. A pretrained Neural BoW model is included in this package.
cd codesearch
python -m venv venv
source venv/bin/activate
pip install -r requirements.txt
python _setup.py

This will save and index vectors in the data folder. It will also generate search results for the 99 CSN queries.

  1. Task extraction is fairly quick for small sets of code search results, but it is expensive to do repeatedly. To expedite the evaluation, we cache the extracted tasks for the results of the 99 CSN queries, as well as keywords for all functions in the datasets.
cd cq
python -m venv venv
source venv/bin/activate
pip install -r requirements.txt
python _setup.py

Cached tasks and keywords are stored in the data folder.

Evaluation

To evaluate the ZaCQ and the other query refinement methods on the CSN queries, you may use the following:

cd evaluation
python run_queries.py
python evaluate.py

The run_queries script determines the subset of CSN queries that can be automatically evaluated, and simulates interactive refinement sessions for all valid questions for each language in CSN. For ZaCQ, the script runs through a set of predefined hyperparameter combinations. The script calculates NDCG, MAP, and MRE metrics for each refinement method and hyperparameter configuration, and stores them in the data/output folder

The evaluate script averages the metrics across all languages after 1-N rounds of refinement. For ZaCQ, it also records the best-performing hyperparamter combination after n rounds of refinement.

Interface

To run the interactive search interface, you need to run two backend servers and start the GUI server:

cd interface/cqserver
python ClarifyAPI.py
cd interface/searchserver
python SearchAPI.py
cd interface/gui
npm start

By default, you can access the GUI at localhost:3000

Owner
Zachary Eberhart
Zachary Eberhart
Generative Adversarial Text to Image Synthesis

Text To Image Synthesis This is a tensorflow implementation of synthesizing images. The images are synthesized using the GAN-CLS Algorithm from the pa

Hao 575 Jan 08, 2023
An Unpaired Sketch-to-Photo Translation Model

Unpaired-Sketch-to-Photo-Translation We have released our code at https://github.com/rt219/Unsupervised-Sketch-to-Photo-Synthesis This project is the

38 Oct 28, 2022
3D Pose Estimation for Vehicles

3D Pose Estimation for Vehicles Introduction This work generates 4 key-points and 2 key-edges from vertices and edges of vehicles as ground truth. The

Jingyi Wang 1 Nov 01, 2021
Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022)

Pop-Out Motion Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022) Jihyun Lee*, Minhyuk Sung*, Hyunjin Kim, Tae-Ky

Jihyun Lee 88 Nov 22, 2022
PyTorch implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The official PyTorch implementation of Neural View S

Angtian Wang 20 Oct 09, 2022
Code for "AutoMTL: A Programming Framework for Automated Multi-Task Learning"

AutoMTL: A Programming Framework for Automated Multi-Task Learning This is the website for our paper "AutoMTL: A Programming Framework for Automated M

Ivy Zhang 40 Dec 04, 2022
《K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters》(2020)

K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters This repository is the implementation of the paper "K-Adapter: Infusing Knowledge

Microsoft 118 Dec 13, 2022
A facial recognition doorbell system using a Raspberry Pi

Facial Recognition Doorbell This project expands on the person-detecting doorbell system to allow it to identify faces, and announce names accordingly

rydercalmdown 22 Apr 15, 2022
Unofficial keras(tensorflow) implementation of MAE model from Masked Autoencoders Are Scalable Vision Learners

MAE-keras Unofficial keras(tensorflow) implementation of MAE model described in 'Masked Autoencoders Are Scalable Vision Learners'. This work has been

Yewon 11 Jun 12, 2022
Neural Tangent Generalization Attacks (NTGA)

Neural Tangent Generalization Attacks (NTGA) ICML 2021 Video | Paper | Quickstart | Results | Unlearnable Datasets | Competitions | Citation Overview

Chia-Hung Yuan 34 Nov 25, 2022
Repo for the ACMMM20 submission: "Personalized breath based biometric authentication with wearable multimodality".

personalized-breath Repo for the ACMMM20 submission: "Personalized breath based biometric authentication with wearable multimodality". Guideline To ex

Manh-Ha Bui 2 Nov 15, 2021
Official implementation of deep-multi-trajectory-based single object tracking (IEEE T-CSVT 2021).

DeepMTA_PyTorch Officical PyTorch Implementation of "Dynamic Attention-guided Multi-TrajectoryAnalysis for Single Object Tracking", Xiao Wang, Zhe Che

Xiao Wang(王逍) 7 Dec 03, 2022
Official implementation for the paper: Multi-label Classification with Partial Annotations using Class-aware Selective Loss

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
Facial detection, landmark tracking and expression transfer library for Windows, Linux and Mac

Welcome to the CSIRO Face Analysis SDK. Documentation for the SDK can be found in doc/documentation.html. All code in this SDK is provided according t

Luiz Carlos Vieira 7 Jul 16, 2020
FedML: A Research Library and Benchmark for Federated Machine Learning

FedML: A Research Library and Benchmark for Federated Machine Learning 📄 https://arxiv.org/abs/2007.13518 News 2021-02-01 (Award): #NeurIPS 2020# Fed

FedML-AI 2.3k Jan 08, 2023
LSTMs (Long Short Term Memory) RNN for prediction of price trends

Price Prediction with Recurrent Neural Networks LSTMs BTC-USD price prediction with deep learning algorithm. Artificial Neural Networks specifically L

5 Nov 12, 2021
PyTorch package for the discrete VAE used for DALL·E.

Overview [Blog] [Paper] [Model Card] [Usage] This is the official PyTorch package for the discrete VAE used for DALL·E. Installation Before running th

OpenAI 9.5k Jan 05, 2023
Code for "Learning Graph Cellular Automata"

Learning Graph Cellular Automata This code implements the experiments from the NeurIPS 2021 paper: "Learning Graph Cellular Automata" Daniele Grattaro

Daniele Grattarola 37 Oct 26, 2022
Vehicle direction identification consists of three module detection , tracking and direction recognization.

Vehicle-direction-identification Vehicle direction identification consists of three module detection , tracking and direction recognization. Algorithm

5 Nov 15, 2022