Weakly-supervised Text Classification Based on Keyword Graph

Overview

Weakly-supervised Text Classification Based on Keyword Graph

How to run?

Download data

Our dataset follows previous works. For long texts, we follow Conwea. For short texts, we follow LOTClass.
We transform all their data into unified json format.

  1. Download datasets from: https://drive.google.com/drive/folders/1D8E9T-vuBE-YdAd9OBy-yS4UW4AptA58?usp=sharing

    • Long text datasets(follow Conwea):

      • 20Newsgroup Fine(20NF)
      • 20Newsgroup Coarse(20NC)
      • NYT Fine(NYT_25)
      • NYT Coarse(NYT_5)
    • Short text datasets(follow LOTClass)

      • Agnews
      • dbpedia
      • imdb
      • amazon
  2. Unzip data into './data/processed'

Another way to obtain data (Not recommended):
You can download long text data from Conwea and short text data from LOTClass and transform data into json format using our code. The code is located at 'preprocess_data/process_long.py (process_short.py) You need to edit the preprocess code to change the dataset path to your downloaded path and change the taskname. The processed data is located in 'data/processed'. We alse provide preprocess code for X-class, which is 'process_x_class.py'.

Requirements

This project is based on python==3.8. The dependencies are as follow:

pytorch
DGL
yacs
visdom
transformers
scikit-learn
numpy
scipy

Train and Eval

  • Recommend to start visdom to show the results.
visdom -p 8888

Open the browser to the server_ip:8888 to show visdom panel.

  • Train:
    • First edit 'task/pipeline.py' to specify to config file and CUDA devices you used.
      Some configuration files are provided in the config folder.

    • Start training:

      python task/pipeline.py
      
    • Our code is based on multi GPUs, may be unable to run on single GPU currently.

Run on your custom dataset.

  1. provide datasets to dir data/processed.

    • keywords.json
      keywords for each class. type: dict. key: class_index. value: list containing all keywords for this class. See provided datasets for details.

    • unlabeled.json
      unlabeled sentences in our paper. type: list. item: list with 2 items([sentence_i,label_i]).
      In order to facilitate the evaluation, we are similar to Conwea's settings, where labels of sentences are provided. The labels are only used for evaluation.

  2. provide config to dir config. You can copy one of the existing config files and change some fields, like number_classes, classifier.type, data_dir_name etc.

  3. Specify the config file name in pipeline.py and run the pipeline code.

Citation

Please cite the following paper if you find our code helpful! Thank you very much.

Lu Zhang, Jiandong Ding, Yi Xu, Yingyao Liu and Shuigeng Zhou. "Weakly-supervised Text Classification Based on Keyword Graph". EMNLP 2021.

Owner
Hello_World
Computer Science at Fudan University.
Hello_World
A high-level yet extensible library for fast language model tuning via automatic prompt search

ruPrompts ruPrompts is a high-level yet extensible library for fast language model tuning via automatic prompt search, featuring integration with Hugg

Sber AI 37 Dec 07, 2022
This repository will contain the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields Project Page | Paper | Supplementary | Video | Slides | Blog | Talk If

1.1k Dec 27, 2022
An open-source NLP research library, built on PyTorch.

An Apache 2.0 NLP research library, built on PyTorch, for developing state-of-the-art deep learning models on a wide variety of linguistic tasks. Quic

AI2 11.4k Jan 01, 2023
apple's universal binaries BUT MUCH WORSE (PRACTICAL SHITPOST) (NOT PRODUCTION READY)

hyperuniversality investment opportunity: what if we could run multiple architectures in a single file, again apple universal binaries, but worse how

luna 2 Oct 19, 2021
Repository for the paper "Optimal Subarchitecture Extraction for BERT"

Bort Companion code for the paper "Optimal Subarchitecture Extraction for BERT." Bort is an optimal subset of architectural parameters for the BERT ar

Alexa 461 Nov 21, 2022
Harvis is designed to automate your C2 Infrastructure.

Harvis Harvis is designed to automate your C2 Infrastructure, currently using Mythic C2. 📌 What is it? Harvis is a python tool to help you create mul

Thiago Mayllart 99 Oct 06, 2022
Train 🤗-transformers model with Poutyne.

poutyne-transformers Train 🤗 -transformers models with Poutyne. Installation pip install poutyne-transformers Example import torch from transformers

Lennart Keller 2 Dec 18, 2022
Espresso: A Fast End-to-End Neural Speech Recognition Toolkit

Espresso Espresso is an open-source, modular, extensible end-to-end neural automatic speech recognition (ASR) toolkit based on the deep learning libra

Yiming Wang 919 Jan 03, 2023
Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning

GenSen Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning Sandeep Subramanian, Adam Trischler, Yoshua B

Maluuba Inc. 309 Oct 19, 2022
Persian-lexicon - A lexicon of 70K unique Persian (Farsi) words

Persian Lexicon This repo uses Uppsala Persian Corpus (UPC) to construct a lexic

Saman Vaisipour 7 Apr 01, 2022
Neural text generators like the GPT models promise a general-purpose means of manipulating texts.

Boolean Prompting for Neural Text Generators Neural text generators like the GPT models promise a general-purpose means of manipulating texts. These m

Jeffrey M. Binder 20 Jan 09, 2023
Labelling platform for text using distant supervision

With DataQA, you can label unstructured text documents using rule-based distant supervision.

245 Aug 05, 2022
Coreference resolution for English, German and Polish, optimised for limited training data and easily extensible for further languages

Coreferee Author: Richard Paul Hudson, msg systems ag 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 German 1.2.3 Polish 1

msg systems ag 169 Dec 21, 2022
超轻量级bert的pytorch版本,大量中文注释,容易修改结构,持续更新

bert4pytorch 2021年8月27更新: 感谢大家的star,最近有小伙伴反映了一些小的bug,我也注意到了,奈何这个月工作上实在太忙,更新不及时,大约会在9月中旬集中更新一个只需要pip一下就完全可用的版本,然后会新添加一些关键注释。 再增加对抗训练的内容,更新一个完整的finetune

muqiu 317 Dec 18, 2022
An automated program that helps customers of Pizza Palour place their pizza orders

PIzza_Order_Assistant Introduction An automated program that helps customers of Pizza Palour place their pizza orders. The program uses voice commands

Tindi Sommers 1 Dec 26, 2021
To be a next-generation DL-based phenotype prediction from genome mutations.

Sequence -----------+-- 3D_structure -- 3D_module --+ +-- ? | |

Eric Alcaide 18 Jan 11, 2022
ZUNIT - Toward Zero-Shot Unsupervised Image-to-Image Translation

ZUNIT Dependencies you can install all the dependencies by pip install -r requirements.txt Datasets Download CUB dataset. Unzip the birds.zip at ./da

Chen Yuanqi 9 Jun 24, 2022
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).

Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte

Benedek Rozemberczki 201 Nov 09, 2022
Few-shot Natural Language Generation for Task-Oriented Dialog

Few-shot Natural Language Generation for Task-Oriented Dialog This repository contains the dataset, source code and trained model for the following pa

172 Dec 13, 2022
Tokenizer - Module python d'analyse syntaxique et de grammaire, tokenization

Tokenizer Le Tokenizer est un analyseur lexicale, il permet, comme Flex and Yacc par exemple, de tokenizer du code, c'est à dire transformer du code e

Manolo 1 Aug 15, 2022