Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On

Related tags

Deep LearningUPMT
Overview

UPMT

Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On

See main.py as an example:

from model import PopMusicTransformer
import argparse
import tensorflow as tf
import os
import pickle
import numpy as np
from glob import glob
parser = argparse.ArgumentParser(description='')
parser.add_argument('--prompt_path', dest='prompt_path', default='./test/prompt/test_input.mid', help='path of prompt')
parser.add_argument('--output_path', dest='output_path', default='./test/output/test_generate.mid', help='path of the output')
parser.add_argument('--favorite_path', dest='favorite_path', default='./test/favorite/test_favorite.mid', help='path of favorite')
parser.add_argument('--trainingdata_path', dest='trainingdata_path', default='./test/data/training.pickle', help='path of favorite training data')
parser.add_argument('--output_checkpoint_folder', dest='output_checkpoint_folder', default='./test/checkpoint/', help='path of favorite')
parser.add_argument('--alpha', default=0.1, help='weight of events')
parser.add_argument('--temperature', default=300, help='sampling temperature')
parser.add_argument('--topk', default=5, help='sampling topk')
parser.add_argument('--smpi', default=[-2,-2,-1,-2,-2,2,2,5], help='signature music pattern interval')

parser.add_argument('--type', dest='type', default='generateno', help='generateno or pretrain or prepare')

args = parser.parse_args()


def main(_):

    tfconfig = tf.ConfigProto(allow_soft_placement=True)
    with tf.Session(config=tfconfig) as sess:
        if args.type == 'prepare':
            midi_paths = glob('./test/favorite'+'/*.mid')
            model = PopMusicTransformer(
                checkpoint='./test/model',
                is_training=False)
            model.prepare_data(
                        midi_paths=midi_paths)    
        elif args.type == 'generateno':
            model = PopMusicTransformer(
                checkpoint='./test/model',
                is_training=False)
            model.generate_noteon(
                        temperature=float(args.temperature),
                        topk=int(args.topk),
                        output_path=args.output_path,  
                        smpi= np.array(args.smpi),
                        prompt=args.prompt_path)
        elif args.type =='pretrain':
            training_data = pickle.load(open(args.trainingdata_path,"rb"))
            if not os.path.exists(args.output_checkpoint_folder):
                os.mkdir(args.output_checkpoint_folder)
            model = PopMusicTransformer(
                checkpoint='./test/model',
                is_training=True)
            model.finetune(
                training_data=training_data,
                alpha=float(args.alpha),
                favoritepath=args.favorite_path,
                output_checkpoint_folder=args.output_checkpoint_folder)

if __name__ == '__main__':
    tf.app.run()

Thanks https://github.com/YatingMusic/remi for the open source.

[NeurIPS2021] Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks

Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks Code for NeurIPS 2021 Paper "Exploring Architectural Ingredients of A

Hanxun Huang 26 Dec 01, 2022
A system for quickly generating training data with weak supervision

Programmatically Build and Manage Training Data Announcement The Snorkel team is now focusing their efforts on Snorkel Flow, an end-to-end AI applicat

Snorkel Team 5.4k Jan 02, 2023
StarGAN2 for practice

StarGAN2 for practice This version of StarGAN2 (coined as 'Post-modern Style Transfer') is intended mostly for fellow artists, who rarely look at scie

vadim epstein 87 Sep 24, 2022
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends)

General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usec

The Kompute Project 1k Jan 06, 2023
Project page for End-to-end Recovery of Human Shape and Pose

End-to-end Recovery of Human Shape and Pose Angjoo Kanazawa, Michael J. Black, David W. Jacobs, Jitendra Malik CVPR 2018 Project Page Requirements Pyt

1.4k Dec 29, 2022
Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers

Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers Results results on COCO val Backbone Method Lr Schd PQ Config Download

155 Dec 20, 2022
Any-to-any voice conversion using synthetic specific-speaker speeches as intermedium features

MediumVC MediumVC is an utterance-level method towards any-to-any VC. Before that, we propose SingleVC to perform A2O tasks(Xi → Ŷi) , Xi means utter

谷下雨 47 Dec 25, 2022
A Unified Generative Framework for Various NER Subtasks.

This is the code for ACL-ICJNLP2021 paper A Unified Generative Framework for Various NER Subtasks. Install the package in the requirements.txt, then u

177 Jan 05, 2023
D²Conv3D: Dynamic Dilated Convolutions for Object Segmentation in Videos

D²Conv3D: Dynamic Dilated Convolutions for Object Segmentation in Videos This repository contains the implementation for "D²Conv3D: Dynamic Dilated Co

17 Oct 20, 2022
Official implementation of paper "Query2Label: A Simple Transformer Way to Multi-Label Classification".

Introdunction This is the official implementation of the paper "Query2Label: A Simple Transformer Way to Multi-Label Classification". Abstract This pa

Shilong Liu 274 Dec 28, 2022
Compare neural networks by their feature similarity

PyTorch Model Compare A tiny package to compare two neural networks in PyTorch. There are many ways to compare two neural networks, but one robust and

Anand Krishnamoorthy 181 Jan 04, 2023
Repository of our paper 'Refer-it-in-RGBD' in CVPR 2021

Refer-it-in-RGBD This is the repository of our paper 'Refer-it-in-RGBD: A Bottom-up Approach for 3D Visual Grounding in RGBD Images' in CVPR 2021 Pape

Haolin Liu 34 Nov 07, 2022
It's final year project of Diploma Engineering. This project is based on Computer Vision.

Face-Recognition-Based-Attendance-System It's final year project of Diploma Engineering. This project is based on Computer Vision. Brief idea about ou

Neel 10 Nov 02, 2022
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Dirk Neuhäuser 6 Dec 08, 2022
Fantasy Points Prediction and Dream Team Formation

Fantasy-Points-Prediction-and-Dream-Team-Formation Collected Data from open source resources that have over 100 Parameters for predicting cricket play

Akarsh Singh 2 Sep 13, 2022
BoxInst: High-Performance Instance Segmentation with Box Annotations

Introduction This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge, the paper is BoxInst: High-Performan

88 Dec 21, 2022
Makes patches from huge resolution .svs slide files using openslide

openslide_patcher Makes patches from huge resolution .svs slide files using openslide Example collage I made from outputs:

2 Dec 23, 2021
Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Nils Thuerey 1.3k Jan 08, 2023
Analysing poker data from home games with friends

Poker Game Analysis Analysing poker data from home games with friends. Not a lot of data is collected, so this project is primarily focussed on descri

Stavros Karmaniolos 1 Oct 15, 2022
Let's create a tool to convert Thailand budget from PDF to CSV.

thailand-budget-pdf2csv Let's create a tool to convert Thailand Government Budgeting from PDF to CSV! รวมพลัง Dev แปลงงบ จาก PDF สู่ Machine-readable

Kao.Geek 88 Dec 19, 2022