Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers

Overview

Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers

PWC PWC


Results

results on COCO val

Backbone Method Lr Schd PQ Config Download
R-50 Panoptic-SegFormer 1x 48.0 config model
R-50 Panoptic-SegFormer 2x 49.6 config model
R-101 Panoptic-SegFormer 2x 50.6 config model
PVTv2-B5 (much lighter) Panoptic-SegFormer 2x 55.6 config model
Swin-L (window size 7) Panoptic-SegFormer 2x 55.8 config model

Install

Prerequisites

  • Linux
  • Python 3.6+
  • PyTorch 1.5+
  • torchvision
  • CUDA 9.2+ (If you build PyTorch from source, CUDA 9.0 is also compatible)
  • GCC 5+
  • mmcv-full==1.3.4
  • mmdet==2.12.0 # higher version may not work
  • timm==0.4.5
  • einops==0.3.0
  • Pillow==8.0.1
  • opencv-python==4.5.2

note: PyTorch1.8 has a bug in its adamw.py and it is solved in PyTorch1.9(see), you can easily solve it by comparing the difference.

install Panoptic SegFormer

python setup.py install 

Datasets

When I began this project, mmdet dose not support panoptic segmentation officially. I convert the dataset from panoptic segmentation format to instance segmentation format for convenience.

1. prepare data (COCO)

cd Panoptic-SegFormer
mkdir datasets
cd datasets
ln -s path_to_coco coco
mkdir annotations/
cd annotations
wget http://images.cocodataset.org/annotations/panoptic_annotations_trainval2017.zip
unzip panoptic_annotations_trainval2017.zip

Then the directory structure should be the following:

Panoptic-SegFormer
├── datasets
│   ├── annotations/
│   │   ├── panoptic_train2017/
│   │   ├── panoptic_train2017.json
│   │   ├── panoptic_val2017/
│   │   └── panoptic_val2017.json
│   └── coco/ 
│
├── config
├── checkpoints
├── easymd
...

2. convert panoptic format to detection format

cd Panoptic-SegFormer
./tools/convert_panoptic_coco.sh coco

Then the directory structure should be the following:

Panoptic-SegFormer
├── datasets
│   ├── annotations/
│   │   ├── panoptic_train2017/
│   │   ├── panoptic_train2017_detection_format.json
│   │   ├── panoptic_train2017.json
│   │   ├── panoptic_val2017/
│   │   ├── panoptic_val2017_detection_format.json
│   │   └── panoptic_val2017.json
│   └── coco/ 
│
├── config
├── checkpoints
├── easymd
...

Run (panoptic segmentation)

train

single-machine with 8 gpus.

./tools/dist_train.sh ./configs/panformer/panformer_r50_24e_coco_panoptic.py 8

test

./tools/dist_test.sh ./configs/panformer/panformer_r50_24e_coco_panoptic.py path/to/model.pth 8

Citing

If you use Panoptic SegFormer in your research, please use the following BibTeX entry.

@article{li2021panoptic,
  title={Panoptic SegFormer},
  author={Li, Zhiqi and Wang, Wenhai and Xie, Enze and Yu, Zhiding and Anandkumar, Anima and Alvarez, Jose M and Lu, Tong and Luo, Ping},
  journal={arXiv},
  year={2021}
}

Acknowledgement

Mainly based on Defromable DETR from MMdet.

Thanks very much for other open source works: timm, Panoptic FCN, MaskFomer, QueryInst

Comments
  • How demo one picture result ?

    How demo one picture result ?

    Dear friend, Thanks you for your good job. Now we do not want to download coco datasets, just want to give one picture, segment it and show its result. How to do it ? Best regards,

    opened by delldu 3
  • what's pvt_v2_ap in code?

    what's pvt_v2_ap in code?

    I found there are many names that obscure to understand. For example: pvt_v2_ap what that stands for? and what's single_stage_w_mask stands for?

    image

    and those file differences?

    opened by jinfagang 2
  • how to visualize demo image?

    how to visualize demo image?

    Dear friend, how to visualize the segmentation result of custom images? I run the infererce.py and didn’t get a good result. Like this: 000000

    I think there are some faults in my code.

    Here is my code:

    from mmcv.runner import checkpoint
    from mmdet.apis.inference import init_detector,LoadImage, inference_detector
    import easymd
    import cv2
    import random
    import colorsys
    import numpy as np
    
    def random_colors(N, bright=True):
        brightness = 1.0 if bright else 0.7
        hsv = [(i / float(N), 1, brightness) for i in range(N)]
        colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv))
        random.shuffle(colors)
        return colors
    
    def apply_mask(image, mask, color, alpha=0.5):
        for c in range(3):
            image[:, :, c] = np.where(mask == 0,
                                      image[:, :, c],
                                      image[:, :, c] *
                                      (1 - alpha) + alpha * color[c] * 255)
        return image
    
    config = './configs/panformer/panformer_pvtb5_24e_coco_panoptic.py'
    #checkpoints = './checkpoints/pseg_r101_r50_latest.pth'
    checkpoints = "./checkpoints/panoptic_segformer_pvtv2b5_2x.pth"
    img_path = "img_path "
    mask_save_path = "save_path"
    
    colors = random_colors(80)
    
    model = init_detector(config,checkpoint=checkpoints)
    
    results = inference_detector(model, [img_path])
    
    img = cv2.imread(img_path)
    
    seg = results['segm'][0]
    N = len(seg)
    
    masked_image = img.copy()
    for i in range(N):
        color = colors[i]
        masks = np.sum(seg[i], axis=0)
        masked_image = apply_mask(masked_image, masks, color)
        # for mask in seg[i]:
        #     masked_image = apply_mask(masked_image, mask, color)
    
    # cv2.imshow("a", masked_image)
    
    opened by garriton 0
  • Location Decoder loss

    Location Decoder loss

    https://github.com/zhiqi-li/Panoptic-SegFormer/blob/e604ef810eaf5101106d221db4b6970c2daca5c9/easymd/models/panformer/panformer_head.py#L360-L364

    Why does the location decoder only compute the losses of the first L-1 layers not the whole L layers?

    opened by hust-nj 0
  • Instruction for single GPU run

    Instruction for single GPU run

    Hi thanks for sharing your works. Iwas trying to run it on single gpu. Would you pls add some instructions or scripts to run it in single gpu? That would be a great help.

    kind regards Abdullah

    opened by nazib 1
  • Impossible to debug, single_gpu code paths are broken

    Impossible to debug, single_gpu code paths are broken

    It seems that the multi gpu training and eval works great, however, while trying to debug you're opt for using a single gpu.
    In that case the code breaks in several parts during the evaluation of the validation set.
    Any chance for a hotfix? :)

    To reproduce, try to run the code from PyCharm in debug mode while there's only one GPU available.

    opened by aviadmx 1
  • Why instance annotations are required along panoptic ones?

    Why instance annotations are required along panoptic ones?

    The model solves the panoptic segmentation task, why does the validation dataset uses the instance segmentation annotations?

    data = dict(
        samples_per_gpu=2,
        workers_per_gpu=2,
        train=dict(
            type=dataset_type,
            ann_file= './datasets/annotations/panoptic_train2017_detection_format.json',
            img_prefix=data_root + 'train2017/',
            pipeline=train_pipeline),
        val=dict( 
          
            segmentations_folder='./seg',
            gt_json = './datasets/annotations/panoptic_val2017.json',
            gt_folder = './datasets/annotations/panoptic_val2017',
            type=dataset_type,
            ann_file=data_root + 'annotations/instances_val2017.json', # Why?
            img_prefix=data_root + 'val2017/',
            pipeline=test_pipeline),
        test=dict(
            segmentations_folder='./seg',
            gt_json = './datasets/annotations/panoptic_val2017.json',
            gt_folder = './datasets/annotations/panoptic_val2017',
            type=dataset_type,
            #ann_file= './datasets/coco/annotations/image_info_test-dev2017.json',
            ann_file=data_root + 'annotations/instances_val2017.json', # Why?
            #img_prefix=data_root + '/test2017/',
            img_prefix=data_root + 'val2017/',
            pipeline=test_pipeline)
            )
    

    We eventually use the instances_val2017.json file instead of panoptic_val2017.json

    opened by aviadmx 3
  • Loading checkpoint

    Loading checkpoint

    When loading the Swin-L checkpoint by adding a load_from line to the config configs/panformer/panformer_swinl_24e_coco_panoptic.pyz as following:

    load_from='./pretrained/panoptic_segformer_swinl_2x.pth'
    

    The loading fails with an error about keys mismatch:

    unexpected key in source state_dict: bbox_head.cls_branches2.0.weight, bbox_head.cls_branches2.0.bias, bbox_head.cls_branches2.1.weight, bbox_head.cls_branches2.1.bias, bbox_head.cls_branches2.2.weight, bbox_head.cls_branches2.2.bias, bbox_head.cls_branches2.3.weight, bbox_head.cls_branches2.3.bias, bbox_head.mask_head.blocks.0.head_norm1.weight, bbox_head.mask_head.blocks.0.head_norm1.bias, bbox_head.mask_head.blocks.0.attn.q.weight, bbox_head.mask_head.blocks.0.attn.q.bias, bbox_head.mask_head.blocks.0.attn.k.weight, bbox_head.mask_head.blocks.0.attn.k.bias, bbox_head.mask_head.blocks.0.attn.v.weight, bbox_head.mask_head.blocks.0.attn.v.bias, bbox_head.mask_head.blocks.0.attn.proj.weight, bbox_head.mask_head.blocks.0.attn.proj.bias, bbox_head.mask_head.blocks.0.attn.linear_l1.0.weight, bbox_head.mask_head.blocks.0.attn.linear_l1.0.bias, bbox_head.mask_head.blocks.0.attn.linear_l2.0.weight, bbox_head.mask_head.blocks.0.attn.linear_l2.0.bias, bbox_head.mask_head.blocks.0.attn.linear_l3.0.weight, bbox_head.mask_head.blocks.0.attn.linear_l3.0.bias, bbox_head.mask_head.blocks.0.attn.linear.0.weight, bbox_head.mask_head.blocks.0.attn.linear.0.bias, bbox_head.mask_head.blocks.0.head_norm2.weight, bbox_head.mask_head.blocks.0.head_norm2.bias, bbox_head.mask_head.blocks.0.mlp.fc1.weight, bbox_head.mask_head.blocks.0.mlp.fc1.bias, bbox_head.mask_head.blocks.0.mlp.fc2.weight, bbox_head.mask_head.blocks.0.mlp.fc2.bias, bbox_head.mask_head.blocks.1.head_norm1.weight, bbox_head.mask_head.blocks.1.head_norm1.bias, bbox_head.mask_head.blocks.1.attn.q.weight, bbox_head.mask_head.blocks.1.attn.q.bias, bbox_head.mask_head.blocks.1.attn.k.weight, bbox_head.mask_head.blocks.1.attn.k.bias, bbox_head.mask_head.blocks.1.attn.v.weight, bbox_head.mask_head.blocks.1.attn.v.bias, bbox_head.mask_head.blocks.1.attn.proj.weight, bbox_head.mask_head.blocks.1.attn.proj.bias, bbox_head.mask_head.blocks.1.attn.linear_l1.0.weight, bbox_head.mask_head.blocks.1.attn.linear_l1.0.bias, bbox_head.mask_head.blocks.1.attn.linear_l2.0.weight, bbox_head.mask_head.blocks.1.attn.linear_l2.0.bias, bbox_head.mask_head.blocks.1.attn.linear_l3.0.weight, bbox_head.mask_head.blocks.1.attn.linear_l3.0.bias, bbox_head.mask_head.blocks.1.attn.linear.0.weight, bbox_head.mask_head.blocks.1.attn.linear.0.bias, bbox_head.mask_head.blocks.1.head_norm2.weight, bbox_head.mask_head.blocks.1.head_norm2.bias, bbox_head.mask_head.blocks.1.mlp.fc1.weight, bbox_head.mask_head.blocks.1.mlp.fc1.bias, bbox_head.mask_head.blocks.1.mlp.fc2.weight, bbox_head.mask_head.blocks.1.mlp.fc2.bias, bbox_head.mask_head.blocks.2.head_norm1.weight, bbox_head.mask_head.blocks.2.head_norm1.bias, bbox_head.mask_head.blocks.2.attn.q.weight, bbox_head.mask_head.blocks.2.attn.q.bias, bbox_head.mask_head.blocks.2.attn.k.weight, bbox_head.mask_head.blocks.2.attn.k.bias, bbox_head.mask_head.blocks.2.attn.v.weight, bbox_head.mask_head.blocks.2.attn.v.bias, bbox_head.mask_head.blocks.2.attn.proj.weight, bbox_head.mask_head.blocks.2.attn.proj.bias, bbox_head.mask_head.blocks.2.attn.linear_l1.0.weight, bbox_head.mask_head.blocks.2.attn.linear_l1.0.bias, bbox_head.mask_head.blocks.2.attn.linear_l2.0.weight, bbox_head.mask_head.blocks.2.attn.linear_l2.0.bias, bbox_head.mask_head.blocks.2.attn.linear_l3.0.weight, bbox_head.mask_head.blocks.2.attn.linear_l3.0.bias, bbox_head.mask_head.blocks.2.attn.linear.0.weight, bbox_head.mask_head.blocks.2.attn.linear.0.bias, bbox_head.mask_head.blocks.2.head_norm2.weight, bbox_head.mask_head.blocks.2.head_norm2.bias, bbox_head.mask_head.blocks.2.mlp.fc1.weight, bbox_head.mask_head.blocks.2.mlp.fc1.bias, bbox_head.mask_head.blocks.2.mlp.fc2.weight, bbox_head.mask_head.blocks.2.mlp.fc2.bias, bbox_head.mask_head.blocks.3.head_norm1.weight, bbox_head.mask_head.blocks.3.head_norm1.bias, bbox_head.mask_head.blocks.3.attn.q.weight, bbox_head.mask_head.blocks.3.attn.q.bias, bbox_head.mask_head.blocks.3.attn.k.weight, bbox_head.mask_head.blocks.3.attn.k.bias, bbox_head.mask_head.blocks.3.attn.v.weight, bbox_head.mask_head.blocks.3.attn.v.bias, bbox_head.mask_head.blocks.3.attn.proj.weight, bbox_head.mask_head.blocks.3.attn.proj.bias, bbox_head.mask_head.blocks.3.attn.linear_l1.0.weight, bbox_head.mask_head.blocks.3.attn.linear_l1.0.bias, bbox_head.mask_head.blocks.3.attn.linear_l2.0.weight, bbox_head.mask_head.blocks.3.attn.linear_l2.0.bias, bbox_head.mask_head.blocks.3.attn.linear_l3.0.weight, bbox_head.mask_head.blocks.3.attn.linear_l3.0.bias, bbox_head.mask_head.blocks.3.attn.linear.0.weight, bbox_head.mask_head.blocks.3.attn.linear.0.bias, bbox_head.mask_head.blocks.3.head_norm2.weight, bbox_head.mask_head.blocks.3.head_norm2.bias, bbox_head.mask_head.blocks.3.mlp.fc1.weight, bbox_head.mask_head.blocks.3.mlp.fc1.bias, bbox_head.mask_head.blocks.3.mlp.fc2.weight, bbox_head.mask_head.blocks.3.mlp.fc2.bias, bbox_head.mask_head.attnen.q.weight, bbox_head.mask_head.attnen.q.bias, bbox_head.mask_head.attnen.k.weight, bbox_head.mask_head.attnen.k.bias, bbox_head.mask_head.attnen.linear_l1.0.weight, bbox_head.mask_head.attnen.linear_l1.0.bias, bbox_head.mask_head.attnen.linear_l2.0.weight, bbox_head.mask_head.attnen.linear_l2.0.bias, bbox_head.mask_head.attnen.linear_l3.0.weight, bbox_head.mask_head.attnen.linear_l3.0.bias, bbox_head.mask_head.attnen.linear.0.weight, bbox_head.mask_head.attnen.linear.0.bias, bbox_head.mask_head2.blocks.0.head_norm1.weight, bbox_head.mask_head2.blocks.0.head_norm1.bias, bbox_head.mask_head2.blocks.0.attn.q.weight, bbox_head.mask_head2.blocks.0.attn.q.bias, bbox_head.mask_head2.blocks.0.attn.k.weight, bbox_head.mask_head2.blocks.0.attn.k.bias, bbox_head.mask_head2.blocks.0.attn.v.weight, bbox_head.mask_head2.blocks.0.attn.v.bias, bbox_head.mask_head2.blocks.0.attn.proj.weight, bbox_head.mask_head2.blocks.0.attn.proj.bias, bbox_head.mask_head2.blocks.0.attn.linear_l1.0.weight, bbox_head.mask_head2.blocks.0.attn.linear_l1.0.bias, bbox_head.mask_head2.blocks.0.attn.linear_l2.0.weight, bbox_head.mask_head2.blocks.0.attn.linear_l2.0.bias, bbox_head.mask_head2.blocks.0.attn.linear_l3.0.weight, bbox_head.mask_head2.blocks.0.attn.linear_l3.0.bias, bbox_head.mask_head2.blocks.0.attn.linear.0.weight, bbox_head.mask_head2.blocks.0.attn.linear.0.bias, bbox_head.mask_head2.blocks.0.head_norm2.weight, bbox_head.mask_head2.blocks.0.head_norm2.bias, bbox_head.mask_head2.blocks.0.mlp.fc1.weight, bbox_head.mask_head2.blocks.0.mlp.fc1.bias, bbox_head.mask_head2.blocks.0.mlp.fc2.weight, bbox_head.mask_head2.blocks.0.mlp.fc2.bias, bbox_head.mask_head2.blocks.0.self_attention.qkv.weight, bbox_head.mask_head2.blocks.0.self_attention.qkv.bias, bbox_head.mask_head2.blocks.0.self_attention.proj.weight, bbox_head.mask_head2.blocks.0.self_attention.proj.bias, bbox_head.mask_head2.blocks.0.norm3.weight, bbox_head.mask_head2.blocks.0.norm3.bias, bbox_head.mask_head2.blocks.1.head_norm1.weight, bbox_head.mask_head2.blocks.1.head_norm1.bias, bbox_head.mask_head2.blocks.1.attn.q.weight, bbox_head.mask_head2.blocks.1.attn.q.bias, bbox_head.mask_head2.blocks.1.attn.k.weight, bbox_head.mask_head2.blocks.1.attn.k.bias, bbox_head.mask_head2.blocks.1.attn.v.weight, bbox_head.mask_head2.blocks.1.attn.v.bias, bbox_head.mask_head2.blocks.1.attn.proj.weight, bbox_head.mask_head2.blocks.1.attn.proj.bias, bbox_head.mask_head2.blocks.1.attn.linear_l1.0.weight, bbox_head.mask_head2.blocks.1.attn.linear_l1.0.bias, bbox_head.mask_head2.blocks.1.attn.linear_l2.0.weight, bbox_head.mask_head2.blocks.1.attn.linear_l2.0.bias, bbox_head.mask_head2.blocks.1.attn.linear_l3.0.weight, bbox_head.mask_head2.blocks.1.attn.linear_l3.0.bias, bbox_head.mask_head2.blocks.1.attn.linear.0.weight, bbox_head.mask_head2.blocks.1.attn.linear.0.bias, bbox_head.mask_head2.blocks.1.head_norm2.weight, bbox_head.mask_head2.blocks.1.head_norm2.bias, bbox_head.mask_head2.blocks.1.mlp.fc1.weight, bbox_head.mask_head2.blocks.1.mlp.fc1.bias, bbox_head.mask_head2.blocks.1.mlp.fc2.weight, bbox_head.mask_head2.blocks.1.mlp.fc2.bias, bbox_head.mask_head2.blocks.1.self_attention.qkv.weight, bbox_head.mask_head2.blocks.1.self_attention.qkv.bias, bbox_head.mask_head2.blocks.1.self_attention.proj.weight, bbox_head.mask_head2.blocks.1.self_attention.proj.bias, bbox_head.mask_head2.blocks.1.norm3.weight, bbox_head.mask_head2.blocks.1.norm3.bias, bbox_head.mask_head2.blocks.2.head_norm1.weight, bbox_head.mask_head2.blocks.2.head_norm1.bias, bbox_head.mask_head2.blocks.2.attn.q.weight, bbox_head.mask_head2.blocks.2.attn.q.bias, bbox_head.mask_head2.blocks.2.attn.k.weight, bbox_head.mask_head2.blocks.2.attn.k.bias, bbox_head.mask_head2.blocks.2.attn.v.weight, bbox_head.mask_head2.blocks.2.attn.v.bias, bbox_head.mask_head2.blocks.2.attn.proj.weight, bbox_head.mask_head2.blocks.2.attn.proj.bias, bbox_head.mask_head2.blocks.2.attn.linear_l1.0.weight, bbox_head.mask_head2.blocks.2.attn.linear_l1.0.bias, bbox_head.mask_head2.blocks.2.attn.linear_l2.0.weight, bbox_head.mask_head2.blocks.2.attn.linear_l2.0.bias, bbox_head.mask_head2.blocks.2.attn.linear_l3.0.weight, bbox_head.mask_head2.blocks.2.attn.linear_l3.0.bias, bbox_head.mask_head2.blocks.2.attn.linear.0.weight, bbox_head.mask_head2.blocks.2.attn.linear.0.bias, bbox_head.mask_head2.blocks.2.head_norm2.weight, bbox_head.mask_head2.blocks.2.head_norm2.bias, bbox_head.mask_head2.blocks.2.mlp.fc1.weight, bbox_head.mask_head2.blocks.2.mlp.fc1.bias, bbox_head.mask_head2.blocks.2.mlp.fc2.weight, bbox_head.mask_head2.blocks.2.mlp.fc2.bias, bbox_head.mask_head2.blocks.2.self_attention.qkv.weight, bbox_head.mask_head2.blocks.2.self_attention.qkv.bias, bbox_head.mask_head2.blocks.2.self_attention.proj.weight, bbox_head.mask_head2.blocks.2.self_attention.proj.bias, bbox_head.mask_head2.blocks.2.norm3.weight, bbox_head.mask_head2.blocks.2.norm3.bias, bbox_head.mask_head2.blocks.3.head_norm1.weight, bbox_head.mask_head2.blocks.3.head_norm1.bias, bbox_head.mask_head2.blocks.3.attn.q.weight, bbox_head.mask_head2.blocks.3.attn.q.bias, bbox_head.mask_head2.blocks.3.attn.k.weight, bbox_head.mask_head2.blocks.3.attn.k.bias, bbox_head.mask_head2.blocks.3.attn.v.weight, bbox_head.mask_head2.blocks.3.attn.v.bias, bbox_head.mask_head2.blocks.3.attn.proj.weight, bbox_head.mask_head2.blocks.3.attn.proj.bias, bbox_head.mask_head2.blocks.3.attn.linear_l1.0.weight, bbox_head.mask_head2.blocks.3.attn.linear_l1.0.bias, bbox_head.mask_head2.blocks.3.attn.linear_l2.0.weight, bbox_head.mask_head2.blocks.3.attn.linear_l2.0.bias, bbox_head.mask_head2.blocks.3.attn.linear_l3.0.weight, bbox_head.mask_head2.blocks.3.attn.linear_l3.0.bias, bbox_head.mask_head2.blocks.3.attn.linear.0.weight, bbox_head.mask_head2.blocks.3.attn.linear.0.bias, bbox_head.mask_head2.blocks.3.head_norm2.weight, bbox_head.mask_head2.blocks.3.head_norm2.bias, bbox_head.mask_head2.blocks.3.mlp.fc1.weight, bbox_head.mask_head2.blocks.3.mlp.fc1.bias, bbox_head.mask_head2.blocks.3.mlp.fc2.weight, bbox_head.mask_head2.blocks.3.mlp.fc2.bias, bbox_head.mask_head2.blocks.3.self_attention.qkv.weight, bbox_head.mask_head2.blocks.3.self_attention.qkv.bias, bbox_head.mask_head2.blocks.3.self_attention.proj.weight, bbox_head.mask_head2.blocks.3.self_attention.proj.bias, bbox_head.mask_head2.blocks.3.norm3.weight, bbox_head.mask_head2.blocks.3.norm3.bias, bbox_head.mask_head2.blocks.4.head_norm1.weight, bbox_head.mask_head2.blocks.4.head_norm1.bias, bbox_head.mask_head2.blocks.4.attn.q.weight, bbox_head.mask_head2.blocks.4.attn.q.bias, bbox_head.mask_head2.blocks.4.attn.k.weight, bbox_head.mask_head2.blocks.4.attn.k.bias, bbox_head.mask_head2.blocks.4.attn.v.weight, bbox_head.mask_head2.blocks.4.attn.v.bias, bbox_head.mask_head2.blocks.4.attn.proj.weight, bbox_head.mask_head2.blocks.4.attn.proj.bias, bbox_head.mask_head2.blocks.4.attn.linear_l1.0.weight, bbox_head.mask_head2.blocks.4.attn.linear_l1.0.bias, bbox_head.mask_head2.blocks.4.attn.linear_l2.0.weight, bbox_head.mask_head2.blocks.4.attn.linear_l2.0.bias, bbox_head.mask_head2.blocks.4.attn.linear_l3.0.weight, bbox_head.mask_head2.blocks.4.attn.linear_l3.0.bias, bbox_head.mask_head2.blocks.4.attn.linear.0.weight, bbox_head.mask_head2.blocks.4.attn.linear.0.bias, bbox_head.mask_head2.blocks.4.head_norm2.weight, bbox_head.mask_head2.blocks.4.head_norm2.bias, bbox_head.mask_head2.blocks.4.mlp.fc1.weight, bbox_head.mask_head2.blocks.4.mlp.fc1.bias, bbox_head.mask_head2.blocks.4.mlp.fc2.weight, bbox_head.mask_head2.blocks.4.mlp.fc2.bias, bbox_head.mask_head2.blocks.4.self_attention.qkv.weight, bbox_head.mask_head2.blocks.4.self_attention.qkv.bias, bbox_head.mask_head2.blocks.4.self_attention.proj.weight, bbox_head.mask_head2.blocks.4.self_attention.proj.bias, bbox_head.mask_head2.blocks.4.norm3.weight, bbox_head.mask_head2.blocks.4.norm3.bias, bbox_head.mask_head2.blocks.5.head_norm1.weight, bbox_head.mask_head2.blocks.5.head_norm1.bias, bbox_head.mask_head2.blocks.5.attn.q.weight, bbox_head.mask_head2.blocks.5.attn.q.bias, bbox_head.mask_head2.blocks.5.attn.k.weight, bbox_head.mask_head2.blocks.5.attn.k.bias, bbox_head.mask_head2.blocks.5.attn.v.weight, bbox_head.mask_head2.blocks.5.attn.v.bias, bbox_head.mask_head2.blocks.5.attn.proj.weight, bbox_head.mask_head2.blocks.5.attn.proj.bias, bbox_head.mask_head2.blocks.5.attn.linear_l1.0.weight, bbox_head.mask_head2.blocks.5.attn.linear_l1.0.bias, bbox_head.mask_head2.blocks.5.attn.linear_l2.0.weight, bbox_head.mask_head2.blocks.5.attn.linear_l2.0.bias, bbox_head.mask_head2.blocks.5.attn.linear_l3.0.weight, bbox_head.mask_head2.blocks.5.attn.linear_l3.0.bias, bbox_head.mask_head2.blocks.5.attn.linear.0.weight, bbox_head.mask_head2.blocks.5.attn.linear.0.bias, bbox_head.mask_head2.blocks.5.head_norm2.weight, bbox_head.mask_head2.blocks.5.head_norm2.bias, bbox_head.mask_head2.blocks.5.mlp.fc1.weight, bbox_head.mask_head2.blocks.5.mlp.fc1.bias, bbox_head.mask_head2.blocks.5.mlp.fc2.weight, bbox_head.mask_head2.blocks.5.mlp.fc2.bias, bbox_head.mask_head2.blocks.5.self_attention.qkv.weight, bbox_head.mask_head2.blocks.5.self_attention.qkv.bias, bbox_head.mask_head2.blocks.5.self_attention.proj.weight, bbox_head.mask_head2.blocks.5.self_attention.proj.bias, bbox_head.mask_head2.blocks.5.norm3.weight, bbox_head.mask_head2.blocks.5.norm3.bias, bbox_head.mask_head2.attnen.q.weight, bbox_head.mask_head2.attnen.q.bias, bbox_head.mask_head2.attnen.k.weight, bbox_head.mask_head2.attnen.k.bias, bbox_head.mask_head2.attnen.linear_l1.0.weight, bbox_head.mask_head2.attnen.linear_l1.0.bias, bbox_head.mask_head2.attnen.linear_l2.0.weight, bbox_head.mask_head2.attnen.linear_l2.0.bias, bbox_head.mask_head2.attnen.linear_l3.0.weight, bbox_head.mask_head2.attnen.linear_l3.0.bias, bbox_head.mask_head2.attnen.linear.0.weight, bbox_head.mask_head2.attnen.linear.0.bias
    
    missing keys in source state_dict: bbox_head.cls_thing_branches.0.weight, bbox_head.cls_thing_branches.0.bias, bbox_head.cls_thing_branches.1.weight, bbox_head.cls_thing_branches.1.bias, bbox_head.cls_thing_branches.2.weight, bbox_head.cls_thing_branches.2.bias, bbox_head.cls_thing_branches.3.weight, bbox_head.cls_thing_branches.3.bias, bbox_head.things_mask_head.blocks.0.head_norm1.weight, bbox_head.things_mask_head.blocks.0.head_norm1.bias, bbox_head.things_mask_head.blocks.0.attn.q.weight, bbox_head.things_mask_head.blocks.0.attn.q.bias, bbox_head.things_mask_head.blocks.0.attn.k.weight, bbox_head.things_mask_head.blocks.0.attn.k.bias, bbox_head.things_mask_head.blocks.0.attn.v.weight, bbox_head.things_mask_head.blocks.0.attn.v.bias, bbox_head.things_mask_head.blocks.0.attn.proj.weight, bbox_head.things_mask_head.blocks.0.attn.proj.bias, bbox_head.things_mask_head.blocks.0.attn.linear_l1.0.weight, bbox_head.things_mask_head.blocks.0.attn.linear_l1.0.bias, bbox_head.things_mask_head.blocks.0.attn.linear_l2.0.weight, bbox_head.things_mask_head.blocks.0.attn.linear_l2.0.bias, bbox_head.things_mask_head.blocks.0.attn.linear_l3.0.weight, bbox_head.things_mask_head.blocks.0.attn.linear_l3.0.bias, bbox_head.things_mask_head.blocks.0.attn.linear.0.weight, bbox_head.things_mask_head.blocks.0.attn.linear.0.bias, bbox_head.things_mask_head.blocks.0.head_norm2.weight, bbox_head.things_mask_head.blocks.0.head_norm2.bias, bbox_head.things_mask_head.blocks.0.mlp.fc1.weight, bbox_head.things_mask_head.blocks.0.mlp.fc1.bias, bbox_head.things_mask_head.blocks.0.mlp.fc2.weight, bbox_head.things_mask_head.blocks.0.mlp.fc2.bias, bbox_head.things_mask_head.blocks.1.head_norm1.weight, bbox_head.things_mask_head.blocks.1.head_norm1.bias, bbox_head.things_mask_head.blocks.1.attn.q.weight, bbox_head.things_mask_head.blocks.1.attn.q.bias, bbox_head.things_mask_head.blocks.1.attn.k.weight, bbox_head.things_mask_head.blocks.1.attn.k.bias, bbox_head.things_mask_head.blocks.1.attn.v.weight, bbox_head.things_mask_head.blocks.1.attn.v.bias, bbox_head.things_mask_head.blocks.1.attn.proj.weight, bbox_head.things_mask_head.blocks.1.attn.proj.bias, bbox_head.things_mask_head.blocks.1.attn.linear_l1.0.weight, bbox_head.things_mask_head.blocks.1.attn.linear_l1.0.bias, bbox_head.things_mask_head.blocks.1.attn.linear_l2.0.weight, bbox_head.things_mask_head.blocks.1.attn.linear_l2.0.bias, bbox_head.things_mask_head.blocks.1.attn.linear_l3.0.weight, bbox_head.things_mask_head.blocks.1.attn.linear_l3.0.bias, bbox_head.things_mask_head.blocks.1.attn.linear.0.weight, bbox_head.things_mask_head.blocks.1.attn.linear.0.bias, bbox_head.things_mask_head.blocks.1.head_norm2.weight, bbox_head.things_mask_head.blocks.1.head_norm2.bias, bbox_head.things_mask_head.blocks.1.mlp.fc1.weight, bbox_head.things_mask_head.blocks.1.mlp.fc1.bias, bbox_head.things_mask_head.blocks.1.mlp.fc2.weight, bbox_head.things_mask_head.blocks.1.mlp.fc2.bias, bbox_head.things_mask_head.blocks.2.head_norm1.weight, bbox_head.things_mask_head.blocks.2.head_norm1.bias, bbox_head.things_mask_head.blocks.2.attn.q.weight, bbox_head.things_mask_head.blocks.2.attn.q.bias, bbox_head.things_mask_head.blocks.2.attn.k.weight, bbox_head.things_mask_head.blocks.2.attn.k.bias, bbox_head.things_mask_head.blocks.2.attn.v.weight, bbox_head.things_mask_head.blocks.2.attn.v.bias, bbox_head.things_mask_head.blocks.2.attn.proj.weight, bbox_head.things_mask_head.blocks.2.attn.proj.bias, bbox_head.things_mask_head.blocks.2.attn.linear_l1.0.weight, bbox_head.things_mask_head.blocks.2.attn.linear_l1.0.bias, bbox_head.things_mask_head.blocks.2.attn.linear_l2.0.weight, bbox_head.things_mask_head.blocks.2.attn.linear_l2.0.bias, bbox_head.things_mask_head.blocks.2.attn.linear_l3.0.weight, bbox_head.things_mask_head.blocks.2.attn.linear_l3.0.bias, bbox_head.things_mask_head.blocks.2.attn.linear.0.weight, bbox_head.things_mask_head.blocks.2.attn.linear.0.bias, bbox_head.things_mask_head.blocks.2.head_norm2.weight, bbox_head.things_mask_head.blocks.2.head_norm2.bias, bbox_head.things_mask_head.blocks.2.mlp.fc1.weight, bbox_head.things_mask_head.blocks.2.mlp.fc1.bias, bbox_head.things_mask_head.blocks.2.mlp.fc2.weight, bbox_head.things_mask_head.blocks.2.mlp.fc2.bias, bbox_head.things_mask_head.blocks.3.head_norm1.weight, bbox_head.things_mask_head.blocks.3.head_norm1.bias, bbox_head.things_mask_head.blocks.3.attn.q.weight, bbox_head.things_mask_head.blocks.3.attn.q.bias, bbox_head.things_mask_head.blocks.3.attn.k.weight, bbox_head.things_mask_head.blocks.3.attn.k.bias, bbox_head.things_mask_head.blocks.3.attn.v.weight, bbox_head.things_mask_head.blocks.3.attn.v.bias, bbox_head.things_mask_head.blocks.3.attn.proj.weight, bbox_head.things_mask_head.blocks.3.attn.proj.bias, bbox_head.things_mask_head.blocks.3.attn.linear_l1.0.weight, bbox_head.things_mask_head.blocks.3.attn.linear_l1.0.bias, bbox_head.things_mask_head.blocks.3.attn.linear_l2.0.weight, bbox_head.things_mask_head.blocks.3.attn.linear_l2.0.bias, bbox_head.things_mask_head.blocks.3.attn.linear_l3.0.weight, bbox_head.things_mask_head.blocks.3.attn.linear_l3.0.bias, bbox_head.things_mask_head.blocks.3.attn.linear.0.weight, bbox_head.things_mask_head.blocks.3.attn.linear.0.bias, bbox_head.things_mask_head.blocks.3.head_norm2.weight, bbox_head.things_mask_head.blocks.3.head_norm2.bias, bbox_head.things_mask_head.blocks.3.mlp.fc1.weight, bbox_head.things_mask_head.blocks.3.mlp.fc1.bias, bbox_head.things_mask_head.blocks.3.mlp.fc2.weight, bbox_head.things_mask_head.blocks.3.mlp.fc2.bias, bbox_head.things_mask_head.attnen.q.weight, bbox_head.things_mask_head.attnen.q.bias, bbox_head.things_mask_head.attnen.k.weight, bbox_head.things_mask_head.attnen.k.bias, bbox_head.things_mask_head.attnen.linear_l1.0.weight, bbox_head.things_mask_head.attnen.linear_l1.0.bias, bbox_head.things_mask_head.attnen.linear_l2.0.weight, bbox_head.things_mask_head.attnen.linear_l2.0.bias, bbox_head.things_mask_head.attnen.linear_l3.0.weight, bbox_head.things_mask_head.attnen.linear_l3.0.bias, bbox_head.things_mask_head.attnen.linear.0.weight, bbox_head.things_mask_head.attnen.linear.0.bias, bbox_head.stuff_mask_head.blocks.0.head_norm1.weight, bbox_head.stuff_mask_head.blocks.0.head_norm1.bias, bbox_head.stuff_mask_head.blocks.0.attn.q.weight, bbox_head.stuff_mask_head.blocks.0.attn.q.bias, bbox_head.stuff_mask_head.blocks.0.attn.k.weight, bbox_head.stuff_mask_head.blocks.0.attn.k.bias, bbox_head.stuff_mask_head.blocks.0.attn.v.weight, bbox_head.stuff_mask_head.blocks.0.attn.v.bias, bbox_head.stuff_mask_head.blocks.0.attn.proj.weight, bbox_head.stuff_mask_head.blocks.0.attn.proj.bias, bbox_head.stuff_mask_head.blocks.0.attn.linear_l1.0.weight, bbox_head.stuff_mask_head.blocks.0.attn.linear_l1.0.bias, bbox_head.stuff_mask_head.blocks.0.attn.linear_l2.0.weight, bbox_head.stuff_mask_head.blocks.0.attn.linear_l2.0.bias, bbox_head.stuff_mask_head.blocks.0.attn.linear_l3.0.weight, bbox_head.stuff_mask_head.blocks.0.attn.linear_l3.0.bias, bbox_head.stuff_mask_head.blocks.0.attn.linear.0.weight, bbox_head.stuff_mask_head.blocks.0.attn.linear.0.bias, bbox_head.stuff_mask_head.blocks.0.head_norm2.weight, bbox_head.stuff_mask_head.blocks.0.head_norm2.bias, bbox_head.stuff_mask_head.blocks.0.mlp.fc1.weight, bbox_head.stuff_mask_head.blocks.0.mlp.fc1.bias, bbox_head.stuff_mask_head.blocks.0.mlp.fc2.weight, bbox_head.stuff_mask_head.blocks.0.mlp.fc2.bias, bbox_head.stuff_mask_head.blocks.0.self_attention.qkv.weight, bbox_head.stuff_mask_head.blocks.0.self_attention.qkv.bias, bbox_head.stuff_mask_head.blocks.0.self_attention.proj.weight, bbox_head.stuff_mask_head.blocks.0.self_attention.proj.bias, bbox_head.stuff_mask_head.blocks.0.norm3.weight, bbox_head.stuff_mask_head.blocks.0.norm3.bias, bbox_head.stuff_mask_head.blocks.1.head_norm1.weight, bbox_head.stuff_mask_head.blocks.1.head_norm1.bias, bbox_head.stuff_mask_head.blocks.1.attn.q.weight, bbox_head.stuff_mask_head.blocks.1.attn.q.bias, bbox_head.stuff_mask_head.blocks.1.attn.k.weight, bbox_head.stuff_mask_head.blocks.1.attn.k.bias, bbox_head.stuff_mask_head.blocks.1.attn.v.weight, bbox_head.stuff_mask_head.blocks.1.attn.v.bias, bbox_head.stuff_mask_head.blocks.1.attn.proj.weight, bbox_head.stuff_mask_head.blocks.1.attn.proj.bias, bbox_head.stuff_mask_head.blocks.1.attn.linear_l1.0.weight, bbox_head.stuff_mask_head.blocks.1.attn.linear_l1.0.bias, bbox_head.stuff_mask_head.blocks.1.attn.linear_l2.0.weight, bbox_head.stuff_mask_head.blocks.1.attn.linear_l2.0.bias, bbox_head.stuff_mask_head.blocks.1.attn.linear_l3.0.weight, bbox_head.stuff_mask_head.blocks.1.attn.linear_l3.0.bias, bbox_head.stuff_mask_head.blocks.1.attn.linear.0.weight, bbox_head.stuff_mask_head.blocks.1.attn.linear.0.bias, bbox_head.stuff_mask_head.blocks.1.head_norm2.weight, bbox_head.stuff_mask_head.blocks.1.head_norm2.bias, bbox_head.stuff_mask_head.blocks.1.mlp.fc1.weight, bbox_head.stuff_mask_head.blocks.1.mlp.fc1.bias, bbox_head.stuff_mask_head.blocks.1.mlp.fc2.weight, bbox_head.stuff_mask_head.blocks.1.mlp.fc2.bias, bbox_head.stuff_mask_head.blocks.1.self_attention.qkv.weight, bbox_head.stuff_mask_head.blocks.1.self_attention.qkv.bias, bbox_head.stuff_mask_head.blocks.1.self_attention.proj.weight, bbox_head.stuff_mask_head.blocks.1.self_attention.proj.bias, bbox_head.stuff_mask_head.blocks.1.norm3.weight, bbox_head.stuff_mask_head.blocks.1.norm3.bias, bbox_head.stuff_mask_head.blocks.2.head_norm1.weight, bbox_head.stuff_mask_head.blocks.2.head_norm1.bias, bbox_head.stuff_mask_head.blocks.2.attn.q.weight, bbox_head.stuff_mask_head.blocks.2.attn.q.bias, bbox_head.stuff_mask_head.blocks.2.attn.k.weight, bbox_head.stuff_mask_head.blocks.2.attn.k.bias, bbox_head.stuff_mask_head.blocks.2.attn.v.weight, bbox_head.stuff_mask_head.blocks.2.attn.v.bias, bbox_head.stuff_mask_head.blocks.2.attn.proj.weight, bbox_head.stuff_mask_head.blocks.2.attn.proj.bias, bbox_head.stuff_mask_head.blocks.2.attn.linear_l1.0.weight, bbox_head.stuff_mask_head.blocks.2.attn.linear_l1.0.bias, bbox_head.stuff_mask_head.blocks.2.attn.linear_l2.0.weight, bbox_head.stuff_mask_head.blocks.2.attn.linear_l2.0.bias, bbox_head.stuff_mask_head.blocks.2.attn.linear_l3.0.weight, bbox_head.stuff_mask_head.blocks.2.attn.linear_l3.0.bias, bbox_head.stuff_mask_head.blocks.2.attn.linear.0.weight, bbox_head.stuff_mask_head.blocks.2.attn.linear.0.bias, bbox_head.stuff_mask_head.blocks.2.head_norm2.weight, bbox_head.stuff_mask_head.blocks.2.head_norm2.bias, bbox_head.stuff_mask_head.blocks.2.mlp.fc1.weight, bbox_head.stuff_mask_head.blocks.2.mlp.fc1.bias, bbox_head.stuff_mask_head.blocks.2.mlp.fc2.weight, bbox_head.stuff_mask_head.blocks.2.mlp.fc2.bias, bbox_head.stuff_mask_head.blocks.2.self_attention.qkv.weight, bbox_head.stuff_mask_head.blocks.2.self_attention.qkv.bias, bbox_head.stuff_mask_head.blocks.2.self_attention.proj.weight, bbox_head.stuff_mask_head.blocks.2.self_attention.proj.bias, bbox_head.stuff_mask_head.blocks.2.norm3.weight, bbox_head.stuff_mask_head.blocks.2.norm3.bias, bbox_head.stuff_mask_head.blocks.3.head_norm1.weight, bbox_head.stuff_mask_head.blocks.3.head_norm1.bias, bbox_head.stuff_mask_head.blocks.3.attn.q.weight, bbox_head.stuff_mask_head.blocks.3.attn.q.bias, bbox_head.stuff_mask_head.blocks.3.attn.k.weight, bbox_head.stuff_mask_head.blocks.3.attn.k.bias, bbox_head.stuff_mask_head.blocks.3.attn.v.weight, bbox_head.stuff_mask_head.blocks.3.attn.v.bias, bbox_head.stuff_mask_head.blocks.3.attn.proj.weight, bbox_head.stuff_mask_head.blocks.3.attn.proj.bias, bbox_head.stuff_mask_head.blocks.3.attn.linear_l1.0.weight, bbox_head.stuff_mask_head.blocks.3.attn.linear_l1.0.bias, bbox_head.stuff_mask_head.blocks.3.attn.linear_l2.0.weight, bbox_head.stuff_mask_head.blocks.3.attn.linear_l2.0.bias, bbox_head.stuff_mask_head.blocks.3.attn.linear_l3.0.weight, bbox_head.stuff_mask_head.blocks.3.attn.linear_l3.0.bias, bbox_head.stuff_mask_head.blocks.3.attn.linear.0.weight, bbox_head.stuff_mask_head.blocks.3.attn.linear.0.bias, bbox_head.stuff_mask_head.blocks.3.head_norm2.weight, bbox_head.stuff_mask_head.blocks.3.head_norm2.bias, bbox_head.stuff_mask_head.blocks.3.mlp.fc1.weight, bbox_head.stuff_mask_head.blocks.3.mlp.fc1.bias, bbox_head.stuff_mask_head.blocks.3.mlp.fc2.weight, bbox_head.stuff_mask_head.blocks.3.mlp.fc2.bias, bbox_head.stuff_mask_head.blocks.3.self_attention.qkv.weight, bbox_head.stuff_mask_head.blocks.3.self_attention.qkv.bias, bbox_head.stuff_mask_head.blocks.3.self_attention.proj.weight, bbox_head.stuff_mask_head.blocks.3.self_attention.proj.bias, bbox_head.stuff_mask_head.blocks.3.norm3.weight, bbox_head.stuff_mask_head.blocks.3.norm3.bias, bbox_head.stuff_mask_head.blocks.4.head_norm1.weight, bbox_head.stuff_mask_head.blocks.4.head_norm1.bias, bbox_head.stuff_mask_head.blocks.4.attn.q.weight, bbox_head.stuff_mask_head.blocks.4.attn.q.bias, bbox_head.stuff_mask_head.blocks.4.attn.k.weight, bbox_head.stuff_mask_head.blocks.4.attn.k.bias, bbox_head.stuff_mask_head.blocks.4.attn.v.weight, bbox_head.stuff_mask_head.blocks.4.attn.v.bias, bbox_head.stuff_mask_head.blocks.4.attn.proj.weight, bbox_head.stuff_mask_head.blocks.4.attn.proj.bias, bbox_head.stuff_mask_head.blocks.4.attn.linear_l1.0.weight, bbox_head.stuff_mask_head.blocks.4.attn.linear_l1.0.bias, bbox_head.stuff_mask_head.blocks.4.attn.linear_l2.0.weight, bbox_head.stuff_mask_head.blocks.4.attn.linear_l2.0.bias, bbox_head.stuff_mask_head.blocks.4.attn.linear_l3.0.weight, bbox_head.stuff_mask_head.blocks.4.attn.linear_l3.0.bias, bbox_head.stuff_mask_head.blocks.4.attn.linear.0.weight, bbox_head.stuff_mask_head.blocks.4.attn.linear.0.bias, bbox_head.stuff_mask_head.blocks.4.head_norm2.weight, bbox_head.stuff_mask_head.blocks.4.head_norm2.bias, bbox_head.stuff_mask_head.blocks.4.mlp.fc1.weight, bbox_head.stuff_mask_head.blocks.4.mlp.fc1.bias, bbox_head.stuff_mask_head.blocks.4.mlp.fc2.weight, bbox_head.stuff_mask_head.blocks.4.mlp.fc2.bias, bbox_head.stuff_mask_head.blocks.4.self_attention.qkv.weight, bbox_head.stuff_mask_head.blocks.4.self_attention.qkv.bias, bbox_head.stuff_mask_head.blocks.4.self_attention.proj.weight, bbox_head.stuff_mask_head.blocks.4.self_attention.proj.bias, bbox_head.stuff_mask_head.blocks.4.norm3.weight, bbox_head.stuff_mask_head.blocks.4.norm3.bias, bbox_head.stuff_mask_head.blocks.5.head_norm1.weight, bbox_head.stuff_mask_head.blocks.5.head_norm1.bias, bbox_head.stuff_mask_head.blocks.5.attn.q.weight, bbox_head.stuff_mask_head.blocks.5.attn.q.bias, bbox_head.stuff_mask_head.blocks.5.attn.k.weight, bbox_head.stuff_mask_head.blocks.5.attn.k.bias, bbox_head.stuff_mask_head.blocks.5.attn.v.weight, bbox_head.stuff_mask_head.blocks.5.attn.v.bias, bbox_head.stuff_mask_head.blocks.5.attn.proj.weight, bbox_head.stuff_mask_head.blocks.5.attn.proj.bias, bbox_head.stuff_mask_head.blocks.5.attn.linear_l1.0.weight, bbox_head.stuff_mask_head.blocks.5.attn.linear_l1.0.bias, bbox_head.stuff_mask_head.blocks.5.attn.linear_l2.0.weight, bbox_head.stuff_mask_head.blocks.5.attn.linear_l2.0.bias, bbox_head.stuff_mask_head.blocks.5.attn.linear_l3.0.weight, bbox_head.stuff_mask_head.blocks.5.attn.linear_l3.0.bias, bbox_head.stuff_mask_head.blocks.5.attn.linear.0.weight, bbox_head.stuff_mask_head.blocks.5.attn.linear.0.bias, bbox_head.stuff_mask_head.blocks.5.head_norm2.weight, bbox_head.stuff_mask_head.blocks.5.head_norm2.bias, bbox_head.stuff_mask_head.blocks.5.mlp.fc1.weight, bbox_head.stuff_mask_head.blocks.5.mlp.fc1.bias, bbox_head.stuff_mask_head.blocks.5.mlp.fc2.weight, bbox_head.stuff_mask_head.blocks.5.mlp.fc2.bias, bbox_head.stuff_mask_head.blocks.5.self_attention.qkv.weight, bbox_head.stuff_mask_head.blocks.5.self_attention.qkv.bias, bbox_head.stuff_mask_head.blocks.5.self_attention.proj.weight, bbox_head.stuff_mask_head.blocks.5.self_attention.proj.bias, bbox_head.stuff_mask_head.blocks.5.norm3.weight, bbox_head.stuff_mask_head.blocks.5.norm3.bias, bbox_head.stuff_mask_head.attnen.q.weight, bbox_head.stuff_mask_head.attnen.q.bias, bbox_head.stuff_mask_head.attnen.k.weight, bbox_head.stuff_mask_head.attnen.k.bias, bbox_head.stuff_mask_head.attnen.linear_l1.0.weight, bbox_head.stuff_mask_head.attnen.linear_l1.0.bias, bbox_head.stuff_mask_head.attnen.linear_l2.0.weight, bbox_head.stuff_mask_head.attnen.linear_l2.0.bias, bbox_head.stuff_mask_head.attnen.linear_l3.0.weight, bbox_head.stuff_mask_head.attnen.linear_l3.0.bias, bbox_head.stuff_mask_head.attnen.linear.0.weight, bbox_head.stuff_mask_head.attnen.linear.0.bias
    
    opened by aviadmx 3
  • ImportError Libtorch_cpu.so: undefined symbol

    ImportError Libtorch_cpu.so: undefined symbol

    Thank you for this awesome work

    Unfortunately I can't run the training because I get the following error

    ./tools/dist_train.sh ./configs/panformer/panformer_r50_24e_coco_panoptic.py 1
    + CONFIG=./configs/panformer/panformer_r50_24e_coco_panoptic.py
    + GPUS=1
    + PORT=29503
    ++ dirname ./tools/dist_train.sh
    ++ dirname ./tools/dist_train.sh
    + PYTHONPATH=./tools/..:
    + python -m torch.distributed.launch --nproc_per_node=1 --master_port=29503 ./tools/train.py ./configs/panformer/panformer_r50_24e_coco_panoptic.py --launcher pytorch --deterministic
    Traceback (most recent call last):
      File "/home/vision/anaconda3/envs/psf/lib/python3.7/runpy.py", line 183, in _run_module_as_main
        mod_name, mod_spec, code = _get_module_details(mod_name, _Error)
      File "/home/vision/anaconda3/envs/psf/lib/python3.7/runpy.py", line 109, in _get_module_details
        __import__(pkg_name)
      File "/home/vision/anaconda3/envs/psf/lib/python3.7/site-packages/torch/__init__.py", line 197, in <module>
        from torch._C import *  # noqa: F403
    ImportError: /home/vision/anaconda3/envs/psf/lib/python3.7/site-packages/torch/lib/libtorch_cpu.so: undefined symbol: _ZNK3c1010TensorImpl23shallow_copy_and_detachERKNS_15VariableVersionEb
    

    This is my environment:

    screen screen1

    opened by EnnioEvo 0
Owner
Nanjing University, China.
Fight Recognition from Still Images in the Wild @ WACVW2022, Real-world Surveillance Workshop

Fight Detection from Still Images in the Wild Detecting fights from still images is an important task required to limit the distribution of social med

Şeymanur Aktı 10 Nov 09, 2022
Python code to generate art with Generative Adversarial Network

GAN_Canvas_Maker Generating Art using Generative Adversarial Network (GAN) Python code to generate art with Generative Adversarial Network: https://to

Jonny Banana 10 Aug 22, 2022
Ankou: Guiding Grey-box Fuzzing towards Combinatorial Difference

Ankou Ankou is a source-based grey-box fuzzer. It intends to use a more rich fitness function by going beyond simple branch coverage and considering t

SoftSec Lab 54 Dec 24, 2022
Metadata-Extractor - Metadata Extractor Script can be used to read in exif metadata

Metadata Extractor The exifextract script can be used to read in exif metadata f

1 Feb 16, 2022
[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction

PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan

Rohan Chacko 39 Oct 12, 2022
Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting

Autoformer (NeurIPS 2021) Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting Time series forecasting is a c

THUML @ Tsinghua University 847 Jan 08, 2023
This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales

Intro This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales Vehicle Sam

39 Jul 21, 2022
Locally Constrained Self-Attentive Sequential Recommendation

LOCKER This is the pytorch implementation of this paper: Locally Constrained Self-Attentive Sequential Recommendation. Zhankui He, Handong Zhao, Zhe L

Zhankui (Aaron) He 8 Jul 30, 2022
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 06, 2023
CVPR 2021

Smoothing the Disentangled Latent Style Space for Unsupervised Image-to-image Translation [Paper] | [Poster] | [Codes] Yahui Liu1,3, Enver Sangineto1,

Yahui Liu 37 Sep 12, 2022
Survival analysis (SA) is a well-known statistical technique for the study of temporal events.

DAGSurv Survival analysis (SA) is a well-known statistical technique for the study of temporal events. In SA, time-to-an-event data is modeled using a

Rahul Kukreja 1 Sep 05, 2022
Source code of the paper Meta-learning with an Adaptive Task Scheduler.

ATS About Source code of the paper Meta-learning with an Adaptive Task Scheduler. If you find this repository useful in your research, please cite the

Huaxiu Yao 16 Dec 26, 2022
[CVPR 2022 Oral] Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning (CVPR 2022 Oral) 2022-03-29: The paper was selected as a CVPR 2022 Oral paper! 2

249 Dec 28, 2022
FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware.

FIRM-AFL FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware. FIRM-AFL addresses two fundamental problems in IoT fuzzing. First, it

356 Dec 23, 2022
Speed-Test - You can check your intenet speed using this tool

Speed-Test Tool By Hez_X AVAILABLE ON : Termux & Kali linux & Ubuntu (Linux E

Hez-X 3 Feb 17, 2022
Self-training with Weak Supervision (NAACL 2021)

This repo holds the code for our weak supervision framework, ASTRA, described in our NAACL 2021 paper: "Self-Training with Weak Supervision"

Microsoft 148 Nov 20, 2022
Users can free try their models on SIDD dataset based on this code

SIDD benchmark 1 Train python train.py If you want to train your network, just modify the yaml in the options folder. 2 Validation python validation.p

Yuzhi ZHAO 2 May 20, 2022
A Python script that creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editing software such as FinalCut Pro for further adjustments.

Text to Subtitles - Python This python file creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editin

Dmytro North 9 Dec 24, 2022
Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Exercises and project documentation for the 3. Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Simona Mircheva 1 Jan 13, 2022
Cereal box identification in store shelves using computer vision and a single train image per model.

Product Recognition on Store Shelves Description You can read the task description here. Report You can read and download our report here. Step A - Mu

Nicholas Baraghini 1 Jan 21, 2022