Neighborhood Contrastive Learning for Novel Class Discovery

Related tags

Deep LearningNCL
Overview

Neighborhood Contrastive Learning for Novel Class Discovery

License PyTorch

This repository contains the official implementation of our paper:

Neighborhood Contrastive Learning for Novel Class Discovery, CVPR 2021
Zhun Zhong, Enrico Fini, Subhankar Roy, Zhiming Luo, Elisa Ricci, Nicu Sebe

Requirements

PyTorch >= 1.1

Data preparation

We follow AutoNovel to prepare the data

By default, we save the dataset in ./data/datasets/ and trained models in ./data/experiments/.

  • For CIFAR-10 and CIFAR-100, the datasets can be automatically downloaded by PyTorch.

  • For ImageNet, we use the exact split files used in the experiments following existing work. To download the split files, run the command: sh scripts/download_imagenet_splits.sh . The ImageNet dataset folder is organized in the following way:

    ImageNet/imagenet_rand118 #downloaded by the above command
    ImageNet/images/train #standard ImageNet training split
    ImageNet/images/val #standard ImageNet validation split
    

Pretrained models

We use the pretrained models (self-supervised learning and supervised learning) provided by AutoNovel. To download, run:

sh scripts/download_pretrained_models.sh

If you would like to train the self-supervised learning and supervised learning models by yourself, please refer to AutoNovel for more details.

After downloading, you can go to perform our neighbor contrastive learning below.

Neighborhood Contrastive Learning for Novel Class Discovery

CIFAR10/CIFAR100

Without Hard Negative Generation (w/o HNG)
# Train on CIFAR10
CUDA_VISIBLE_DEVICES=0 sh scripts/ncl_cifar10.sh ./data/datasets/CIFAR/ ./data/experiments/ ./data/experiments/pretrained/supervised_learning/resnet_rotnet_cifar10.pth

# Train on CIFAR100
CUDA_VISIBLE_DEVICES=0 sh scripts/ncl_cifar100.sh ./data/datasets/CIFAR/ ./data/experiments/ ./data/experiments/pretrained/supervised_learning/resnet_rotnet_cifar100.pth
With Hard Negative Generation (w/ HNG)
# Train on CIFAR10
CUDA_VISIBLE_DEVICES=0 sh scripts/ncl_hng_cifar10.sh ./data/datasets/CIFAR/ ./data/experiments/ ./data/experiments/pretrained/supervised_learning/resnet_rotnet_cifar10.pth

# Train on CIFAR100
CUDA_VISIBLE_DEVICES=0 sh scripts/ncl_hng_cifar100.sh ./data/datasets/CIFAR/ ./data/experiments/ ./data/experiments/pretrained/supervised_learning/resnet_rotnet_cifar100.pth

Note that, for cifar-10, we suggest to train the model w/o HNG, because the results of w HNG and w/o HNG for cifar-10 are similar. In addition, the model w/ HNG sometimes will collapse, but you can try different seeds to get the normal result.

ImageNet

Without Hard Negative Generation (w/o HNG)
# Subset A
CUDA_VISIBLE_DEVICES=0 python ncl_imagenet.py --unlabeled_subset A --model_name resnet_imagenet_ncl

# Subset B
CUDA_VISIBLE_DEVICES=0 python ncl_imagenet.py --unlabeled_subset B --model_name resnet_imagenet_ncl

# Subset C
CUDA_VISIBLE_DEVICES=0 python ncl_imagenet.py --unlabeled_subset C --model_name resnet_imagenet_ncl
With Hard Negative Generation (w/o HNG)
# Subset A
CUDA_VISIBLE_DEVICES=0 python ncl_imagenet.py --hard_negative_start 3 --unlabeled_subset A --model_name resnet_imagenet_ncl_hng

# Subset B
CUDA_VISIBLE_DEVICES=0 python ncl_imagenet.py --hard_negative_start 3 --unlabeled_subset B --model_name resnet_imagenet_ncl_hng

# Subset C
CUDA_VISIBLE_DEVICES=0 python ncl_imagenet.py --hard_negative_start 3 --unlabeled_subset C --model_name resnet_imagenet_ncl_hng

Acknowledgement

Our code is heavily designed based on AutoNovel. If you use this code, please also acknowledge their paper.

Citation

We hope you find our work useful. If you would like to acknowledge it in your project, please use the following citation:

@InProceedings{Zhong_2021_CVPR,
      author    = {Zhong, Zhun and Fini, Enrico and Roy, Subhankar and Luo, Zhiming and Ricci, Elisa and Sebe, Nicu},
      title     = {Neighborhood Contrastive Learning for Novel Class Discovery},
      booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
      month     = {June},
      year      = {2021},
      pages     = {10867-10875}
}

Contact me

If you have any questions about this code, please do not hesitate to contact me.

Zhun Zhong

Owner
Zhun Zhong
Zhun Zhong
3D-Transformer: Molecular Representation with Transformer in 3D Space

3D-Transformer: Molecular Representation with Transformer in 3D Space

55 Dec 19, 2022
[CVPR 2020] Transform and Tell: Entity-Aware News Image Captioning

Transform and Tell: Entity-Aware News Image Captioning This repository contains the code to reproduce the results in our CVPR 2020 paper Transform and

Alasdair Tran 85 Dec 13, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 27, 2022
pytorch implementation of dftd2 & dftd3

torch-dftd pytorch implementation of dftd2 [1] & dftd3 [2, 3] Install # Install from pypi pip install torch-dftd # Install from source (for developer

33 Nov 28, 2022
Rename Images with Auto Generated Neural Image Captions

Recaption Images with Generated Neural Image Caption Example Usage: Commandline: Recaption all images from folder /home/feng/Downloads/images to folde

feng wang 3 May 01, 2022
An implementation of RetinaNet in PyTorch.

RetinaNet An implementation of RetinaNet in PyTorch. Installation Training COCO 2017 Pascal VOC Custom Dataset Evaluation Todo Credits Installation In

Conner Vercellino 297 Jan 04, 2023
UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering

UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering This repository holds all the code and data for our recent work on

Mohamed El Banani 118 Dec 06, 2022
Syed Waqas Zamir 906 Dec 30, 2022
Code for "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection", ICRA 2021

FGR This repository contains the python implementation for paper "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection"(I

Yi Wei 31 Dec 08, 2022
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models (published in ICLR2018)

Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models Pouya Samangouei*, Maya Kabkab*, Rama Chellappa [*: authors co

Maya Kabkab 212 Dec 07, 2022
Atomistic Line Graph Neural Network

Table of Contents Introduction Installation Examples Pre-trained models Quick start using colab JARVIS-ALIGNN webapp Peformances on a few datasets Use

National Institute of Standards and Technology 91 Dec 30, 2022
FedTorch is an open-source Python package for distributed and federated training of machine learning models using PyTorch distributed API

FedTorch is a generic repository for benchmarking different federated and distributed learning algorithms using PyTorch Distributed API.

Machine Learning and Optimization Lab @PennState 136 Dec 23, 2022
Dark Finix: All in one hacking framework with almost 100 tools

Dark Finix - Hacking Framework. Dark Finix is a all in one hacking framework wit

Md. Nur habib 2 Feb 18, 2022
Python-experiments - A Repository which contains python scripts to automate things and make your life easier with python

Python Experiments A Repository which contains python scripts to automate things

Vivek Kumar Singh 11 Sep 25, 2022
Human Dynamics from Monocular Video with Dynamic Camera Movements

Human Dynamics from Monocular Video with Dynamic Camera Movements Ri Yu, Hwangpil Park and Jehee Lee Seoul National University ACM Transactions on Gra

215 Jan 01, 2023
A deep-learning pipeline for segmentation of ambiguous microscopic images.

Welcome to Official repository of deepflash2 - a deep-learning pipeline for segmentation of ambiguous microscopic images. Quick Start in 30 seconds se

Matthias Griebel 39 Dec 19, 2022
A more easy-to-use implementation of KPConv

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 35 Dec 14, 2022
The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble

Wordle RL The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble I know there are more deterministic

Aditya Arora 3 Feb 22, 2022
Codebase for Attentive Neural Hawkes Process (A-NHP) and Attentive Neural Datalog Through Time (A-NDTT)

Introduction Codebase for the paper Transformer Embeddings of Irregularly Spaced Events and Their Participants. This codebase contains two packages: a

Alan Yang 28 Dec 12, 2022
Sibur challange 2021 competition - 6 place

sibur challange 2021 Решение на 6 место: https://sibur.ai-community.com/competitions/5/tasks/13 Скор 1.4066/1.4159 public/private. Архитектура - однос

Ivan 5 Jan 11, 2022