dataset for ECCV 2020 "Motion Capture from Internet Videos"

Related tags

Deep LearningiMoCap
Overview

Motion Capture from Internet Videos

Motion Capture from Internet Videos
Junting Dong*, Qing Shuai*, Yuanqing Zhang, Xian Liu, Xiaowei Zhou, Hujun Bao
ECCV 2020 Project Page

Datasets

Internet video dataset

Download

Modified Human3.6M dataset

You can download our modified Human3.6M dataset here.

Create your own synthetic data

First, we split the origin videos into different folders, and store the 3D annotations as follows.

<path_to_data>
├── data_2d_h36m_cpn_ft_h36m_dbb.npz
├── joints3d
│   ├── S9_Directions 1.mat
│   ├── S9_Directions.mat
│   ├── ...
│   ├── ...
│   ├── ...
│   ├── S9_WalkTogether 1.mat
│   └── S9_WalkTogether.mat
└── S9
    ├── Directions
    │   ├── Directions.54138969.mp4
    │   ├── Directions.55011271.mp4
    │   ├── Directions.58860488.mp4
    │   └── Directions.60457274.mp4
    ├── Directions1
    │   ├── Directions1.54138969.mp4
    │   ├── Directions1.55011271.mp4
    │   ├── Directions1.58860488.mp4
    │   └── Directions1.60457274.mp4
    |   ......
    ├── WalkTogether
    │   ├── WalkTogether.54138969.mp4
    │   ├── WalkTogether.55011271.mp4
    │   ├── WalkTogether.58860488.mp4
    │   └── WalkTogether.60457274.mp4
    └── WalkTogether1
        ├── ......

We use finetune cpn output as our 2D pose from videopose3d

wget https://dl.fbaipublicfiles.com/video-pose-3d/data_2d_h36m_cpn_ft_h36m_dbb.npz

After all, you can generate the synthetic data. More details can be found in the file script/dataset/sample_h36m.py.

python3 script/dataset/sample_h36m.py --video_path <path_to_data>/S9

Quantitative evaluation

Our quantitative evaluation includes two parts: match and reconstruction. We provide the evaluation scripts as example.

Owner
ZJU3DV
ZJU3DV is a research group of State Key Lab of CAD&CG, Zhejiang University, which maily focuses on the research of 3D computer vision, SLAM and AR.
ZJU3DV
DISTIL: Deep dIverSified inTeractIve Learning.

DISTIL: Deep dIverSified inTeractIve Learning. An active/inter-active learning library built on py-torch for reducing labeling costs.

decile-team 110 Dec 06, 2022
Robot Servers and Server Manager software for robo-gym

robo-gym-server-modules Robot Servers and Server Manager software for robo-gym. For info on how to use this package please visit the robo-gym website

JR ROBOTICS 4 Aug 16, 2021
ANEA: Distant Supervision for Low-Resource Named Entity Recognition

ANEA: Distant Supervision for Low-Resource Named Entity Recognition ANEA is a tool to automatically annotate named entities in unlabeled text based on

Saarland University Spoken Language Systems Group 15 Mar 30, 2022
Tools for the Cleveland State Human Motion and Control Lab

Introduction This is a collection of tools that are helpful for gait analysis. Some are specific to the needs of the Human Motion and Control Lab at C

CSU Human Motion and Control Lab 88 Dec 16, 2022
[Arxiv preprint] Causality-inspired Single-source Domain Generalization for Medical Image Segmentation (code&data-processing pipeline)

Causality-inspired Single-source Domain Generalization for Medical Image Segmentation Arxiv preprint Repository under construction. Might still be bug

Cheng 31 Dec 27, 2022
This is a library for training and applying sparse fine-tunings with torch and transformers.

This is a library for training and applying sparse fine-tunings with torch and transformers. Please refer to our paper Composable Sparse Fine-Tuning f

Cambridge Language Technology Lab 37 Dec 30, 2022
This is the official pytorch implementation of AutoDebias, an automatic debiasing method for recommendation.

AutoDebias This is the official pytorch implementation of AutoDebias, a debiasing method for recommendation system. AutoDebias is proposed in the pape

Dong Hande 77 Nov 25, 2022
GPU-Accelerated Deep Learning Library in Python

Hebel GPU-Accelerated Deep Learning Library in Python Hebel is a library for deep learning with neural networks in Python using GPU acceleration with

Hannes Bretschneider 1.2k Dec 21, 2022
The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P

Aljaz Bozic 134 Dec 16, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 828 Dec 28, 2022
Concept drift monitoring for HA model servers.

{Fast, Correct, Simple} - pick three Easily compare training and production ML data & model distributions Goals Boxkite is an instrumentation library

98 Dec 15, 2022
Text-Based Ideal Points

Text-Based Ideal Points Source code for the paper: Text-Based Ideal Points by Keyon Vafa, Suresh Naidu, and David Blei (ACL 2020). Update (June 29, 20

Keyon Vafa 37 Oct 09, 2022
AutoDeeplab / auto-deeplab / AutoML for semantic segmentation, implemented in Pytorch

AutoML for Image Semantic Segmentation Currently this repo contains the only working open-source implementation of Auto-Deeplab which, by the way out-

AI Necromancer 299 Dec 17, 2022
MPLP: Metapath-Based Label Propagation for Heterogenous Graphs

MPLP: Metapath-Based Label Propagation for Heterogenous Graphs Results on MAG240M Here, we demonstrate the following performance on the MAG240M datase

Qiuying Peng 10 Jun 28, 2022
sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code

sequitur sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three differ

Jonathan Shobrook 305 Dec 21, 2022
Code for the paper "Implicit Representations of Meaning in Neural Language Models"

Implicit Representations of Meaning in Neural Language Models Preliminaries Create and set up a conda environment as follows: conda create -n state-pr

Belinda Li 39 Nov 03, 2022
noisy labels; missing labels; semi-supervised learning; entropy; uncertainty; robustness and generalisation.

ProSelfLC: CVPR 2021 ProSelfLC: Progressive Self Label Correction for Training Robust Deep Neural Networks For any specific discussion or potential fu

amos_xwang 57 Dec 04, 2022
Chatbot in 200 lines of code using TensorLayer

Seq2Seq Chatbot This is a 200 lines implementation of Twitter/Cornell-Movie Chatbot, please read the following references before you read the code: Pr

TensorLayer Community 820 Dec 17, 2022
code for paper "Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?"

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search? Code for paper: Does Unsupervised Architecture Representation

39 Dec 17, 2022
The official repo for OC-SORT: Observation-Centric SORT on video Multi-Object Tracking. OC-SORT is simple, online and robust to occlusion/non-linear motion.

OC-SORT Observation-Centric SORT (OC-SORT) is a pure motion-model-based multi-object tracker. It aims to improve tracking robustness in crowded scenes

Jinkun Cao 325 Jan 05, 2023