Code for "PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation" CVPR 2019 oral

Related tags

Deep Learningpvnet
Overview

Good news! We release a clean version of PVNet: clean-pvnet, including

  1. how to train the PVNet on the custom dataset.
  2. Use PVNet with a detector.
  3. The training and testing on the tless dataset, where we detect multiple instances in an image.

PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation

introduction

PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation
Sida Peng, Yuan Liu, Qixing Huang, Xiaowei Zhou, Hujun Bao
CVPR 2019 oral
Project Page

Any questions or discussions are welcomed!

Truncation LINEMOD Dataset

Check TRUNCATION_LINEMOD.md for information about the Truncation LINEMOD dataset.

Installation

One way is to set up the environment with docker: How to install pvnet with docker.

Thanks Joe Dinius for providing the docker implementation.

Another way is to use the following commands.

  1. Set up python 3.6.7 environment
pip install -r requirements.txt

We need compile several files, which works fine with pytorch v0.4.1/v1.1 and gcc 5.4.0.

For users with a RTX GPU, you must use CUDA10 and pytorch v1.1 built from CUDA10.

  1. Compile the Ransac Voting Layer
ROOT=/path/to/pvnet
cd $ROOT/lib/ransac_voting_gpu_layer
python setup.py build_ext --inplace
  1. Compile some extension utils
cd $ROOT/lib/utils/extend_utils

Revise the cuda_include and dart in build_extend_utils_cffi.py to be compatible with the CUDA in your computer.

sudo apt-get install libgoogle-glog-dev=0.3.4-0.1
sudo apt-get install libsuitesparse-dev=1:4.4.6-1
sudo apt-get install libatlas-base-dev=3.10.2-9
python build_extend_utils_cffi.py

If you cannot install libsuitesparse-dev=1:4.4.6-1, please install libsuitesparse, run build_ceres.sh and move ceres/ceres-solver/build/lib/libceres.so* to lib/utils/extend_utils/lib.

Add the lib under extend_utils to the LD_LIBRARY_PATH

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path/to/pvnet/lib/utils/extend_utils/lib

Dataset Configuration

Prepare the dataset

Download the LINEMOD, which can be found at here.

Download the LINEMOD_ORIG, which can be found at here.

Download the OCCLUSION_LINEMOD, which can be found at here.

Create the soft link

mkdir $ROOT/data
ln -s path/to/LINEMOD $ROOT/data/LINEMOD
ln -s path/to/LINEMOD_ORIG $ROOT/data/LINEMOD_ORIG
ln -s path/to/OCCLUSION_LINEMOD $ROOT/data/OCCLUSION_LINEMOD

Compute FPS keypoints

python lib/utils/data_utils.py

Synthesize images for each object

See pvnet-rendering for information about the image synthesis.

Demo

Download the pretrained model of cat from here and put it to $ROOT/data/model/cat_demo/199.pth.

Run the demo

python tools/demo.py

If setup correctly, the output will look like

cat

Visualization of the voting procedure

We add a jupyter notebook visualization.ipynb for the keypoint detection pipeline of PVNet, aiming to make it easier for readers to understand our paper. Thanks for Kudlur, M 's suggestion.

Training and testing

Training on the LINEMOD

Before training, remember to add the lib under extend_utils to the LD_LIDBRARY_PATH

export LD_LIDBRARY_PATH=$LD_LIDBRARY_PATH:/path/to/pvnet/lib/utils/extend_utils/lib

Training

python tools/train_linemod.py --cfg_file configs/linemod_train.json --linemod_cls cat

Testing

We provide the pretrained models of each object, which can be found at here.

Download the pretrained model and move it to $ROOT/data/model/{cls}_linemod_train/199.pth. For instance

mkdir $ROOT/data/model
mv ape_199.pth $ROOT/data/model/ape_linemod_train/199.pth

Testing

python tools/train_linemod.py --cfg_file configs/linemod_train.json --linemod_cls cat --test_model

Citation

If you find this code useful for your research, please use the following BibTeX entry.

@inproceedings{peng2019pvnet,
  title={PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation},
  author={Peng, Sida and Liu, Yuan and Huang, Qixing and Zhou, Xiaowei and Bao, Hujun},
  booktitle={CVPR},
  year={2019}
}

Acknowledgement

This work is affliated with ZJU-SenseTime Joint Lab of 3D Vision, and its intellectual property belongs to SenseTime Group Ltd.

Copyright (c) ZJU-SenseTime Joint Lab of 3D Vision. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Owner
ZJU3DV
ZJU3DV is a research group of State Key Lab of CAD&CG, Zhejiang University. We focus on the research of 3D computer vision, SLAM and AR.
ZJU3DV
Pip-package for trajectory benchmarking from "Be your own Benchmark: No-Reference Trajectory Metric on Registered Point Clouds", ECMR'21

Map Metrics for Trajectory Quality Map metrics toolkit provides a set of metrics to quantitatively evaluate trajectory quality via estimating consiste

Mobile Robotics Lab. at Skoltech 31 Oct 28, 2022
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022
Count GitHub Stars ⭐

Count GitHub Stars per Day ⭐ Track GitHub stars per day over a date range to measure the open-source popularity of different repositories. Requirement

Ultralytics 20 Nov 20, 2022
Can we visualize a large scientific data set with a surrogate model? We're building a GAN for the Earth's Mantle Convection data set to see if we can!

EarthGAN - Earth Mantle Surrogate Modeling Can a surrogate model of the Earth’s Mantle Convection data set be built such that it can be readily run in

Tim 0 Dec 09, 2021
A Python script that creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editing software such as FinalCut Pro for further adjustments.

Text to Subtitles - Python This python file creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editin

Dmytro North 9 Dec 24, 2022
Official repository of the paper 'Essentials for Class Incremental Learning'

Essentials for Class Incremental Learning Official repository of the paper 'Essentials for Class Incremental Learning' This Pytorch repository contain

33 Nov 27, 2022
Official repository for MixFaceNets: Extremely Efficient Face Recognition Networks

MixFaceNets This is the official repository of the paper: MixFaceNets: Extremely Efficient Face Recognition Networks. (Accepted in IJCB2021) https://i

Fadi Boutros 51 Dec 13, 2022
AQP is a modular pipeline built to enable the comparison and testing of different quality metric configurations.

Audio Quality Platform - AQP An Open Modular Python Platform for Objective Speech and Audio Quality Metrics AQP is a highly modular pipeline designed

Jack Geraghty 24 Oct 01, 2022
The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

Yuki M. Asano 249 Dec 22, 2022
Code of Puregaze: Purifying gaze feature for generalizable gaze estimation, AAAI 2022.

PureGaze: Purifying Gaze Feature for Generalizable Gaze Estimation Description Our work is accpeted by AAAI 2022. Picture: We propose a domain-general

39 Dec 05, 2022
Accuracy Aligned. Concise Implementation of Swin Transformer

Accuracy Aligned. Concise Implementation of Swin Transformer This repository contains the implementation of Swin Transformer, and the training codes o

FengWang 77 Dec 16, 2022
Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21)

NeuralGIF Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21) We present Neural Generalized Implicit F

Garvita Tiwari 104 Nov 18, 2022
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)

Spatial unbiased GANs — Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener

Junho Kim 16 Apr 15, 2022
Official DGL implementation of "Rethinking High-order Graph Convolutional Networks"

SE Aggregation This is the implementation for Rethinking High-order Graph Convolutional Networks. Here we show the codes for citation networks as an e

Tianqi Zhang (张天启) 32 Jul 19, 2022
EZ graph is an easy to use AI solution that allows you to make and train your neural networks without a single line of code.

EZ-Graph EZ Graph is a GUI that allows users to make and train neural networks without writing a single line of code. Requirements python 3 pandas num

1 Jul 03, 2022
Generative Adversarial Networks(GANs)

Generative Adversarial Networks(GANs) Vanilla GAN ClusterGAN Vanilla GAN Model Structure Final Generator Structure A MLP with 2 hidden layers of hidde

Zhenbang Feng 2 Nov 05, 2021
Official implementation of paper "Query2Label: A Simple Transformer Way to Multi-Label Classification".

Introdunction This is the official implementation of the paper "Query2Label: A Simple Transformer Way to Multi-Label Classification". Abstract This pa

Shilong Liu 274 Dec 28, 2022
Neighborhood Contrastive Learning for Novel Class Discovery

Neighborhood Contrastive Learning for Novel Class Discovery This repository contains the official implementation of our paper: Neighborhood Contrastiv

Zhun Zhong 56 Dec 09, 2022
pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802

PyTorch SRResNet Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs

Jiu XU 436 Jan 09, 2023
CS583: Deep Learning

CS583: Deep Learning

Shusen Wang 2.6k Dec 30, 2022