CrossNER: Evaluating Cross-Domain Named Entity Recognition (AAAI-2021)

Overview

CrossNER

License: MIT

NEW (2021/1/5): Fixed several annotation errors (thanks for the help from Youliang Yuan).

CrossNER: Evaluating Cross-Domain Named Entity Recognition (Accepted in AAAI-2021) [PDF]

CrossNER is a fully-labeled collected of named entity recognition (NER) data spanning over five diverse domains (Politics, Natural Science, Music, Literature, and Artificial Intelligence) with specialized entity categories for different domains. Additionally, CrossNER also includes unlabeled domain-related corpora for the corresponding five domains. We hope that our collected dataset (CrossNER) will catalyze research in the NER domain adaptation area.

You can have a quick overview of this paper through our blog. If you use the dataset in an academic paper, please consider citing the following paper.

@article{liu2020crossner,
      title={CrossNER: Evaluating Cross-Domain Named Entity Recognition}, 
      author={Zihan Liu and Yan Xu and Tiezheng Yu and Wenliang Dai and Ziwei Ji and Samuel Cahyawijaya and Andrea Madotto and Pascale Fung},
      year={2020},
      eprint={2012.04373},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

The CrossNER Dataset

Data Statistics and Entity Categories

Data statistics of unlabeled domain corpora, labeled NER samples and entity categories for each domain.

Data Examples

Data examples for the collected five domains. Each domain has its specialized entity categories.

Domain Overlaps

Vocabulary overlaps between domains (%). Reuters denotes the Reuters News domain, “Science” denotes the natural science domain and “Litera.” denotes the literature domain.

Download

Labeled NER data: Labeled NER data for the five target domains (Politics, Science, Music, Literature, and AI) and the source domain (Reuters News from CoNLL-2003 shared task) can be found in ner_data folder.

Unlabeled Corpora: Unlabeled domain-related corpora (domain-level, entity-level, task-level and integrated) for the five target domains can be downloaded here.

Dependency

  • Install PyTorch (Tested in PyTorch 1.2.0 and Python 3.6)
  • Install transformers (Tested in transformers 3.0.2)

Domain-Adaptive Pre-Training (DAPT)

Configurations

  • --train_data_file: The file path of the pre-training corpus.
  • --output_dir: The output directory where the pre-trained model is saved.
  • --model_name_or_path: Continue pre-training on which model.
❱❱❱ python run_language_modeling.py --output_dir=politics_spanlevel_integrated --model_type=bert --model_name_or_path=bert-base-cased --do_train --train_data_file=corpus/politics_integrated.txt --mlm

This example is for span-level pre-training using integrated corpus in the politics domain. This code is modified based on run_language_modeling.py from huggingface transformers (3.0.2).

Baselines

Configurations

  • --tgt_dm: Target domain that the model needs to adapt to.
  • --conll: Using source domain data (News domain from CoNLL 2003) for pre-training.
  • --joint: Jointly train using source and target domain data.
  • --num_tag: Number of label types for the target domain (we put the details in src/dataloader.py).
  • --ckpt: Checkpoint path to load the pre-trained model.
  • --emb_file: Word-level embeddings file path.

Directly Fine-tune

Directly fine-tune the pre-trained model (span-level + integrated corpus) to the target domain (politics domain).

❱❱❱ python main.py --exp_name politics_directly_finetune --exp_id 1 --num_tag 19 --ckpt politics_spanlevel_integrated/pytorch_model.bin --tgt_dm politics --batch_size 16

Jointly Train

Initialize the model with the pre-trained model (span-level + integrated corpus). Then, jointly train the model with the source and target (politics) domain data.

❱❱❱ python main.py --exp_name politics_jointly_train --exp_id 1 --num_tag 19 --conll --joint --ckpt politics_spanlevel_integrated/pytorch_model.bin --tgt_dm politics

Pre-train then Fine-tune

Initialize the model with the pre-trained model (span-level + integrated corpus). Then fine-tune it to the target (politics) domain after pre-training on the source domain data.

❱❱❱ python main.py --exp_name politics_pretrain_then_finetune --exp_id 1 --num_tag 19 --conll --ckpt politics_spanlevel_integrated/pytorch_model.bin --tgt_dm politics --batch_size 16

BiLSTM-CRF (Lample et al. 2016)

Jointly train BiLSTM-CRF (word+Char level) on the source domain and target (politics) domain. (we use glove.6B.300d.txt for word-level embeddings and torchtext.vocab.CharNGram() for character-level embeddings).

❱❱❱ python main.py --exp_name politics_bilstm_wordchar --exp_id 1 --num_tag 19 --tgt_dm politics --bilstm --dropout 0.3 --lr 1e-3 --usechar --emb_dim 400

Coach (Liu et al. 2020)

Jointly train Coach (word+Char level) on the source domain and target (politics) domain.

❱❱❱ python main.py --exp_name politics_coach_wordchar --exp_id 1 --num_tag 3 --entity_enc_hidden_dim 200 --tgt_dm politics --coach --dropout 0.5 --lr 1e-4 --usechar --emb_dim 400

Other Notes

  • In the aforementioned baselines, we provide running commands for the politics target domain as an example. The running commands for other target domains can be found in the run.sh file.

Bug Report

Owner
Zihan Liu
Ph.D. Candidate at HKUST CAiRE. I work on natural language processing, multilingual, dialogue, cross-domain adaptation.
Zihan Liu
Retraining OpenAI's GPT-2 on Discord Chats

Train OpenAI's GPT-2 on Discord Chats Retraining a Text Generation Model on Discord Chats using gpt-2-simple that wraps existing model fine-tuning and

Ayush Mishra 4 Oct 27, 2022
Implementaion of our ACL 2022 paper Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation

Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation This is the implementaion of our paper: Bridging the

hezw.tkcw 20 Dec 12, 2022
Mirco Ravanelli 2.3k Dec 27, 2022
🏆 • 5050 most frequent words in 109 languages

🏆 Most Common Words Multilingual 5000 most frequent words in 109 languages. Uses wordfrequency.info as a source. 🔗 License source code license data

14 Nov 24, 2022
In this repository we have tested 3 VQA models on the ImageCLEF-2019 dataset.

Med-VQA In this repository we have tested 3 VQA models on the ImageCLEF-2019 dataset. Two of these are made on top of Facebook AI Reasearch's Multi-Mo

Kshitij Ambilduke 8 Apr 14, 2022
Framework for fine-tuning pretrained transformers for Named-Entity Recognition (NER) tasks

NERDA Not only is NERDA a mesmerizing muppet-like character. NERDA is also a python package, that offers a slick easy-to-use interface for fine-tuning

Ekstra Bladet 141 Dec 30, 2022
In this Notebook I've build some machine-learning and deep-learning to classify corona virus tweets, in both multi class classification and binary classification.

Hello, This Notebook Contains Example of Corona Virus Tweets Multi Class Classification. - Classes is: Extremely Positive, Positive, Extremely Negativ

Khaled Tofailieh 3 Dec 06, 2022
aMLP Transformer Model for Japanese

aMLP-japanese Japanese aMLP Pretrained Model aMLPとは、Liu, Daiらが提案する、Transformerモデルです。 ざっくりというと、BERTの代わりに使えて、より性能の良いモデルです。 詳しい解説は、こちらの記事などを参考にしてください。 この

tanreinama 13 Aug 11, 2022
BERN2: an advanced neural biomedical namedentity recognition and normalization tool

BERN2 We present BERN2 (Advanced Biomedical Entity Recognition and Normalization), a tool that improves the previous neural network-based NER tool by

DMIS Laboratory - Korea University 99 Jan 06, 2023
Semantic search for quotes.

squote A semantic search engine that takes some input text and returns some (questionably) relevant (questionably) famous quotes. Built with: bert-as-

cjwallace 11 Jun 25, 2022
BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model

BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model

303 Dec 17, 2022
ConvBERT: Improving BERT with Span-based Dynamic Convolution

ConvBERT Introduction In this repo, we introduce a new architecture ConvBERT for pre-training based language model. The code is tested on a V100 GPU.

YITUTech 237 Dec 10, 2022
Pipelines de datos, 2021.

Este repo ilustra un proceso sencillo de automatización de transformación y modelado de datos, a través de un pipeline utilizando Luigi. Stack princip

Rodolfo Ferro 8 May 19, 2022
Task-based datasets, preprocessing, and evaluation for sequence models.

SeqIO: Task-based datasets, preprocessing, and evaluation for sequence models. SeqIO is a library for processing sequential data to be fed into downst

Google 290 Dec 26, 2022
Problem: Given a nepali news find the category of the news

Classification of category of nepali news catorgory using different algorithms Problem: Multiclass Classification Approaches: TFIDF for vectorization

pudasainishushant 2 Jan 09, 2022
A 10000+ hours dataset for Chinese speech recognition

A 10000+ hours dataset for Chinese speech recognition

309 Dec 16, 2022
A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

Libo Qin 132 Nov 25, 2022
CCF BDCI BERT系统调优赛题baseline(Pytorch版本)

CCF BDCI BERT系统调优赛题baseline(Pytorch版本) 此版本基于Pytorch后端的huggingface进行实现。由于此实现使用了Oneflow的dataloader作为数据读入的方式,因此也需要安装Oneflow。其它框架的数据读取可以参考OneflowDataloade

Ziqi Zhou 9 Oct 13, 2022
Anuvada: Interpretable Models for NLP using PyTorch

Anuvada: Interpretable Models for NLP using PyTorch So, you want to know why your classifier arrived at a particular decision or why your flashy new d

EDGE 102 Oct 01, 2022
A fast Text-to-Speech (TTS) model. Work well for English, Mandarin/Chinese, Japanese, Korean, Russian and Tibetan (so far). 快速语音合成模型,适用于英语、普通话/中文、日语、韩语、俄语和藏语(当前已测试)。

简体中文 | English 并行语音合成 [TOC] 新进展 2021/04/20 合并 wavegan 分支到 main 主分支,删除 wavegan 分支! 2021/04/13 创建 encoder 分支用于开发语音风格迁移模块! 2021/04/13 softdtw 分支 支持使用 Sof

Atomicoo 161 Dec 19, 2022