Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

Related tags

Deep Learningpiccolo
Overview

PICCOLO: Point-Cloud Centric Omnidirectional Localization

Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021) [Paper] [Video].


PICCOLO is a simple, efficient algorithm for omnidirectional localization that estimates camera pose given a set of input query omnidirectional image and point cloud: no additional preprocessing/learning is required!


In this repository, we provide the implementation and instructions for running PICCOLO, along with the accompanying OmniScenes dataset. If you have any questions regarding the dataset or the baseline implementations, please leave an issue or contact [email protected].

Running PICCOLO

Dataset Preparation

First, download the Stanford2D-3D-S Dataset, and place the data in the directory structure below.

piccolo/data
└── stanford (Stanford2D-3D-S Dataset)
    ├── pano (panorama images)
    │   ├── area_1
    │   │  └── *.png
    │   ⋮
    │   │
    │   └── area_6
    │       └── *.png
    ├── pcd_not_aligned (point cloud data)
    │   ├── area_1
    │   │   └── *.txt
    │   ⋮
    │   │
    │   └── area_6
    │       └── *.txt
    └── pose (json files containing ground truth camera pose)
        ├── area_1
        │   └── *.json
        ⋮
        │
        └── area_6
            └── *.json

Installation

To run the codebase, you need Anaconda. Once you have Anaconda installed, run the following command to create a conda environment.

conda create --name omniloc python=3.7
conda activate omniloc
pip install -r requirements.txt -f https://download.pytorch.org/whl/torch_stable.html 
conda install cudatoolkit=10.1

In addition, you must install pytorch_scatter. Follow the instructions provided in the pytorch_scatter github repo. You need to install the version for torch 1.7.0 and CUDA 10.1.

Running

To obtain results for the Stanford-2D-3D-S dataset, run the following command from the terminal:

python main.py --config configs/stanford.ini --log logs/NAME_OF_LOG_DIRECTORY

The config above performs gradient descent sequentially for each candidate starting point. We also provide a parallel implementation of PICCOLO, which performs gradient descent in parallel. While this version faster, it shows slightly inferior performance compared to the sequential optimization version. To run the parallel implementation, run the following command:

python main.py --config configs/stanford_parallel.ini --log logs/NAME_OF_LOG_DIRECTORY

Output

After running, four files will be in the log directory.

  • Config file used for PICCOLO
  • Images, made by projecting point cloud using the result obtained from PICCOLO, in NAME_OF_LOG_DIRECTORY/results
  • Csv file which contains the information
    • Panorama image name
    • Ground truth translation
    • Ground truth rotation
    • Whether the image was skipped (skipped when the ground truth translation is out of point cloud bound)
    • Translation obtained by running PICCOLO
    • Rotation obtained by running PICCOLO
    • Translation error
    • Rotation error
    • Time
  • Tensorboard file containing the accuracy

Downloading OmniScenes

OmniScenes is our newly collected dataset for evaluating omnidirectional localization in diverse scenearios such as robot-mounted/handheld cameras and scenes with changes.


The dataset is comprised of images and point clouds captured from 7 scenes ranging from wedding halls to hotel rooms. We are currently in the process of removing regions in the dataset that contains private information difficult to be released in public. We will notify further updates through this GitHub repository.

Owner
Noob grad student
Python binding for Khiva library.

Khiva-Python Build Documentation Build Linux and Mac OS Build Windows Code Coverage README This is the Khiva Python binding, it allows the usage of Kh

Shapelets 46 Oct 16, 2022
Paaster is a secure by default end-to-end encrypted pastebin built with the objective of simplicity.

Follow the development of our desktop client here Paaster Paaster is a secure by default end-to-end encrypted pastebin built with the objective of sim

Ward 211 Dec 25, 2022
A small library of 3D related utilities used in my research.

utils3D A small library of 3D related utilities used in my research. Installation Install via GitHub pip install git+https://github.com/Steve-Tod/util

Zhenyu Jiang 8 May 20, 2022
The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in

Dinghan Shen 49 Dec 22, 2022
Cobalt Strike teamserver detection.

Cobalt-Strike-det Cobalt Strike teamserver detection. usage: cobaltstrike_verify.py [-l TARGETS] [-t THREADS] optional arguments: -h, --help show this

TimWhite 17 Sep 27, 2022
Pytorch implementation of COIN, a framework for compression with implicit neural representations 🌸

COIN 🌟 This repo contains a Pytorch implementation of COIN: COmpression with Implicit Neural representations, including code to reproduce all experim

Emilien Dupont 104 Dec 14, 2022
ColBERT: Contextualized Late Interaction over BERT (SIGIR'20)

Update: if you're looking for ColBERTv2 code, you can find it alongside a new simpler API, in the branch new_api. ColBERT ColBERT is a fast and accura

Stanford Future Data Systems 637 Jan 08, 2023
Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

Wang jiahao 3 Oct 31, 2022
Action Segmentation Evaluation

Reference Action Segmentation Evaluation Code This repository contains the reference code for action segmentation evaluation. If you have a bug-fix/im

5 May 22, 2022
Pytorch Lightning 1.2k Jan 06, 2023
simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

Ramón Casero 1 Jan 07, 2022
This Jupyter notebook shows one way to implement a simple first-order low-pass filter on sampled data in discrete time.

How to Implement a First-Order Low-Pass Filter in Discrete Time We often teach or learn about filters in continuous time, but then need to implement t

Joshua Marshall 4 Aug 24, 2022
Learning to trade under the reinforcement learning framework

Trading Using Q-Learning In this project, I will present an adaptive learning model to trade a single stock under the reinforcement learning framework

Uirá Caiado 470 Nov 28, 2022
This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)

SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug

Yue Yu 58 Dec 21, 2022
A semismooth Newton method for elliptic PDE-constrained optimization

sNewton4PDEOpt The Python module implements a semismooth Newton method for solving finite-element discretizations of the strongly convex, linear ellip

2 Dec 08, 2022
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class.

CNNs fruits360 Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class. CNN on a pretrained model Build a CNN on a pretrained model, Res

Ricky Chuang 1 Mar 07, 2022
Code for the paper "Functional Regularization for Reinforcement Learning via Learned Fourier Features"

Reinforcement Learning with Learned Fourier Features State-space Soft Actor-Critic Experiments Move to the state-SAC-LFF repository. cd state-SAC-LFF

Alex Li 10 Nov 11, 2022
Image Classification - A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

0 Jan 23, 2022
Official code for "EagerMOT: 3D Multi-Object Tracking via Sensor Fusion" [ICRA 2021]

EagerMOT: 3D Multi-Object Tracking via Sensor Fusion Read our ICRA 2021 paper here. Check out the 3 minute video for the quick intro or the full prese

Aleksandr Kim 276 Dec 30, 2022