PyTorch implementation for ComboGAN

Overview

ComboGAN

This is our ongoing PyTorch implementation for ComboGAN. Code was written by Asha Anoosheh (built upon CycleGAN)

[ComboGAN Paper]

If you use this code for your research, please cite:

ComboGAN: Unrestrained Scalability for Image Domain Translation Asha Anoosheh, Eirikur Augustsson, Radu Timofte, Luc van Gool In Arxiv, 2017.





Prerequisites

  • Linux or macOS
  • Python 3
  • CPU or NVIDIA GPU + CUDA CuDNN

Getting Started

Installation

  • Install PyTorch and dependencies from http://pytorch.org
  • Install Torch vision from the source.
git clone https://github.com/pytorch/vision
cd vision
python setup.py install
pip install visdom
pip install dominate
  • Clone this repo:
git clone https://github.com/AAnoosheh/ComboGAN.git
cd ComboGAN

ComboGAN training

Our ready datasets can be downloaded using ./datasets/download_dataset.sh .

A pretrained model for the 14-painters dataset can be found HERE. Place under ./checkpoints/ and test using the instructions below, with args --name paint14_pretrained --dataroot ./datasets/painters_14 --n_domains 14 --which_epoch 1150.

Example running scripts can be found in the scripts directory.

  • Train a model:
python train.py --name 
   
     --dataroot ./datasets/
    
      --n_domains 
     
       --niter 
      
        --niter_decay 
        
       
      
     
    
   

Checkpoints will be saved by default to ./checkpoints/ /

  • Fine-tuning/Resume training:
python train.py --continue_train --which_epoch 
   
     --name 
    
      --dataroot ./datasets/
     
       --n_domains 
      
        --niter 
       
         --niter_decay 
         
        
       
      
     
    
   
  • Test the model:
python test.py --phase test --name 
   
     --dataroot ./datasets/
    
      --n_domains 
     
       --which_epoch 
      
        --serial_test

      
     
    
   

The test results will be saved to a html file here: ./results/ / /index.html .

Training/Testing Details

  • Flags: see options/train_options.py for training-specific flags; see options/test_options.py for test-specific flags; and see options/base_options.py for all common flags.
  • Dataset format: The desired data directory (provided by --dataroot) should contain subfolders of the form train*/ and test*/, and they are loaded in alphabetical order. (Note that a folder named train10 would be loaded before train2, and thus all checkpoints and results would be ordered accordingly.)
  • CPU/GPU (default --gpu_ids 0): set--gpu_ids -1 to use CPU mode; set --gpu_ids 0,1,2 for multi-GPU mode. You need a large batch size (e.g. --batchSize 32) to benefit from multiple GPUs.
  • Visualization: during training, the current results and loss plots can be viewed using two methods. First, if you set --display_id > 0, the results and loss plot will appear on a local graphics web server launched by visdom. To do this, you should have visdom installed and a server running by the command python -m visdom.server. The default server URL is http://localhost:8097. display_id corresponds to the window ID that is displayed on the visdom server. The visdom display functionality is turned on by default. To avoid the extra overhead of communicating with visdom set --display_id 0. Secondly, the intermediate results are also saved to ./checkpoints/ /web/index.html . To avoid this, set the --no_html flag.
  • Preprocessing: images can be resized and cropped in different ways using --resize_or_crop option. The default option 'resize_and_crop' resizes the image to be of size (opt.loadSize, opt.loadSize) and does a random crop of size (opt.fineSize, opt.fineSize). 'crop' skips the resizing step and only performs random cropping. 'scale_width' resizes the image to have width opt.fineSize while keeping the aspect ratio. 'scale_width_and_crop' first resizes the image to have width opt.loadSize and then does random cropping of size (opt.fineSize, opt.fineSize).

NOTE: one should not expect ComboGAN to work on just any combination of input and output datasets (e.g. dogs<->houses). We find it works better if two datasets share similar visual content. For example, landscape painting<->landscape photographs works much better than portrait painting <-> landscape photographs.

Owner
Asha Anoosheh
Asha Anoosheh
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

DV Lab 115 Dec 23, 2022
SAS: Self-Augmentation Strategy for Language Model Pre-training

SAS: Self-Augmentation Strategy for Language Model Pre-training This repository

Alibaba 5 Nov 02, 2022
[PNAS2021] The neural architecture of language: Integrative modeling converges on predictive processing

The neural architecture of language: Integrative modeling converges on predictive processing Code accompanying the paper The neural architecture of la

Martin Schrimpf 36 Dec 01, 2022
A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.

TorchRL Disclaimer This library is not officially released yet and is subject to change. The features are available before an official release so that

Meta Research 860 Jan 07, 2023
Commonsense Ability Tests

CATS Commonsense Ability Tests Dataset and script for paper Evaluating Commonsense in Pre-trained Language Models Use making_sense.py to run the exper

XUHUI ZHOU 28 Oct 19, 2022
Controlling Hill Climb Racing with Hand Tacking

Controlling Hill Climb Racing with Hand Tacking Opened Palm for Gas Closed Palm for Brake

Rohit Ingole 3 Jan 18, 2022
Predicting future trajectories of people in cameras of novel scenarios and views.

Pedestrian Trajectory Prediction Predicting future trajectories of pedestrians in cameras of novel scenarios and views. This repository contains the c

8 Sep 03, 2022
The code for MM2021 paper "Multi-Level Counterfactual Contrast for Visual Commonsense Reasoning"

The Code for MM2021 paper "Multi-Level Counterfactual Contrast for Visual Commonsense Reasoning" Setting up and using the repo Get the dataset. Follow

4 Apr 20, 2022
Numerical Methods with Python, Numpy and Matplotlib

Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe

Vincent Bonnet 10 Dec 20, 2021
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
The official implementation of CVPR 2021 Paper: Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation.

Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation This repository is the official implementation of CVPR 2021 paper:

9 Nov 14, 2022
Generating Images with Recurrent Adversarial Networks

Generating Images with Recurrent Adversarial Networks Python (Theano) implementation of Generating Images with Recurrent Adversarial Networks code pro

Daniel Jiwoong Im 121 Sep 08, 2022
Wav2Vec for speech recognition, classification, and audio classification

Soxan در زبان پارسی به نام سخن This repository consists of models, scripts, and notebooks that help you to use all the benefits of Wav2Vec 2.0 in your

Mehrdad Farahani 140 Dec 15, 2022
Unsupervised Attributed Multiplex Network Embedding (AAAI 2020)

Unsupervised Attributed Multiplex Network Embedding (DMGI) Overview Nodes in a multiplex network are connected by multiple types of relations. However

Chanyoung Park 114 Dec 06, 2022
🔥RandLA-Net in Tensorflow (CVPR 2020, Oral & IEEE TPAMI 2021)

RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds (CVPR 2020) This is the official implementation of RandLA-Net (CVPR2020, Oral

Qingyong 1k Dec 30, 2022
Code for Massive-scale Decoding for Text Generation using Lattices

Massive-scale Decoding for Text Generation using Lattices Jiacheng Xu, Greg Durrett TL;DR: a new search algorithm to construct lattices encoding many

Jiacheng Xu 37 Dec 18, 2022
DISTIL: Deep dIverSified inTeractIve Learning.

DISTIL: Deep dIverSified inTeractIve Learning. An active/inter-active learning library built on py-torch for reducing labeling costs.

decile-team 110 Dec 06, 2022
Finetuning Pipeline

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
This repo contains the implementation of YOLOv2 in Keras with Tensorflow backend.

Easy training on custom dataset. Various backends (MobileNet and SqueezeNet) supported. A YOLO demo to detect raccoon run entirely in brower is accessible at https://git.io/vF7vI (not on Windows).

Huynh Ngoc Anh 1.7k Dec 24, 2022
A map update dataset and benchmark

MUNO21 MUNO21 is a dataset and benchmark for machine learning methods that automatically update and maintain digital street map datasets. Previous dat

16 Nov 30, 2022