A PaddlePaddle version image model zoo.

Overview

Paddle-Image-Models

GitHub forks GitHub Repo stars Pypi Downloads GitHub release (latest by date including pre-releases) GitHub

English | 简体中文

A PaddlePaddle version image model zoo.

Install Package

Usage

  • Quick Start

    import paddle
    from ppim import rednet_26
    
    # Load the model
    model, val_transforms = rednet_26(pretrained=True)
    
    # Model summary 
    paddle.summary(model, input_size=(1, 3, 224, 224))
    
    # Random a input
    x = paddle.randn(shape=(1, 3, 224, 224))
    
    # Model forword
    out = model(x)
  • Finetune

    import paddle
    import paddle.nn as nn
    import paddle.vision.transforms as T
    from paddle.vision import Cifar100
    
    from ppim import rexnet_1_0
    
    # Load the model
    model, val_transforms = rexnet_1_0(pretrained=True, class_dim=100)
    
    # Use the PaddleHapi Model
    model = paddle.Model(model)
    
    # Set the optimizer
    opt = paddle.optimizer.Adam(learning_rate=0.001, parameters=model.parameters())
    
    # Set the loss function
    loss = nn.CrossEntropyLoss()
    
    # Set the evaluate metric
    metric = paddle.metric.Accuracy(topk=(1, 5))
    
    # Prepare the model 
    model.prepare(optimizer=opt, loss=loss, metrics=metric)
    
    # Set the data preprocess
    train_transforms = T.Compose([
        T.Resize(256, interpolation='bicubic'),
        T.RandomCrop(224),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ])
    
    # Load the Cifar100 dataset
    train_dataset = Cifar100(mode='train', transform=train_transforms, backend='pil')
    val_dataset = Cifar100(mode='test',  transform=val_transforms, backend='pil')
    
    # Finetune the model 
    model.fit(
        train_data=train_dataset, 
        eval_data=val_dataset, 
        batch_size=256, 
        epochs=2, 
        eval_freq=1, 
        log_freq=1, 
        save_dir='save_models', 
        save_freq=1, 
        verbose=1, 
        drop_last=False, 
        shuffle=True,
        num_workers=0
    )

Model Zoo

You might also like...
Object detection and instance segmentation toolkit based on PaddlePaddle.
Object detection and instance segmentation toolkit based on PaddlePaddle.

Object detection and instance segmentation toolkit based on PaddlePaddle.

Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle.

Paddle-Adversarial-Toolbox Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle. Model Zoo Common FGS

Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)
Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)

星星的孩子 - 一款为孤独症孩子设计的聊天机器人游戏 孤独症儿童是目前常常被忽视的一类群体。他们有着类似性格内向的特征,实际却受着广泛性发育障碍的折磨。 项目背景 这类儿童在与人交往时存在着沟通障碍,其特点表现在: 社交交流差,互动障碍明显 认知能力有限,被动认知 兴趣狭窄,重复刻板,缺乏变化和想象

Official PaddlePaddle implementation of Paint Transformer
Official PaddlePaddle implementation of Paint Transformer

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Paddle Implementation] Update We have optimized the serial inference p

An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop

PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+
PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+

PaddlePaddle Vision Transformers State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 🤖 PaddlePaddle Visual Transformers (PaddleViT or

Remote sensing change detection tool based on PaddlePaddle

PdRSCD PdRSCD(PaddlePaddle Remote Sensing Change Detection)是一个基于飞桨PaddlePaddle的遥感变化检测的项目,pypi包名为ppcd。目前0.2版本,最新支持图像列表输入的训练和预测,如多期影像、多源影像甚至多期多源影像。可以快速完

Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Comments
  • 无法引入ppim

    无法引入ppim


    AttributeError Traceback (most recent call last) in 1 import paddle ----> 2 from ppim import rednet_26 3 4 # 使用 PPIM whl 包加载模型 5 model, val_transforms = rednet_26(pretrained=True, return_transforms=True)

    ~.conda\envs\paddle\lib\site-packages\ppim_init_.py in ----> 1 import ppim.models as models 2 3 from ppim.models import * 4 from inspect import isfunction, isclass 5

    ~.conda\envs\paddle\lib\site-packages\ppim\models_init_.py in 3 from ppim.models.tnt import tnt_s, TNT 4 from ppim.models.t2t import t2t_vit_7, t2t_vit_10, t2t_vit_12, t2t_vit_14, t2t_vit_19, t2t_vit_24, t2t_vit_t_14, t2t_vit_t_19, t2t_vit_t_24, t2t_vit_14_384, t2t_vit_24_token_labeling ----> 5 from ppim.models.pvt import pvt_ti, pvt_s, pvt_m, pvt_l, PyramidVisionTransformer 6 from ppim.models.pit import pit_ti, pit_s, pit_xs, pit_b, pit_ti_distilled, pit_s_distilled, pit_xs_distilled, pit_b_distilled, PoolingTransformer, DistilledPoolingTransformer 7 from ppim.models.coat import coat_ti, coat_m, coat_lite_ti, coat_lite_m, CoaT

    ~.conda\envs\paddle\lib\site-packages\ppim\models\pvt.py in 5 import paddle.vision.transforms as T 6 ----> 7 import ppim.models.vit as vit 8 9 from ppim.models.common import add_parameter, load_model

    AttributeError: module 'ppim' has no attribute 'models'

    opened by hanknewbird 0
Releases(1.1.0)
Owner
AgentMaker
Focus on deep learning tools
AgentMaker
Learn the Deep Learning for Computer Vision in three steps: theory from base to SotA, code in PyTorch, and space-repetition with Anki

DeepCourse: Deep Learning for Computer Vision arthurdouillard.com/deepcourse/ This is a course I'm giving to the French engineering school EPITA each

Arthur Douillard 113 Nov 29, 2022
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX

ONNX msg_chn_wacv20 depth completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20 model in

Ibai Gorordo 19 Oct 22, 2022
State-of-the-art data augmentation search algorithms in PyTorch

MuarAugment Description MuarAugment is a package providing the easiest way to a state-of-the-art data augmentation pipeline. How to use You can instal

43 Dec 12, 2022
Ascend your Jupyter Notebook usage

Jupyter Ascending Sync Jupyter Notebooks from any editor About Jupyter Ascending lets you edit Jupyter notebooks from your favorite editor, then insta

Untitled AI 254 Jan 08, 2023
The datasets and code of ACL 2021 paper "Aspect-Category-Opinion-Sentiment Quadruple Extraction with Implicit Aspects and Opinions".

Aspect-Category-Opinion-Sentiment (ACOS) Quadruple Extraction This repo contains the data sets and source code of our paper: Aspect-Category-Opinion-S

NUSTM 144 Jan 02, 2023
Roach: End-to-End Urban Driving by Imitating a Reinforcement Learning Coach

CARLA-Roach This is the official code release of the paper End-to-End Urban Driving by Imitating a Reinforcement Learning Coach by Zhejun Zhang, Alexa

Zhejun Zhang 118 Dec 28, 2022
SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021) PyTorch implementation of SnapMix | paper Method Overview Cite

DavidHuang 126 Dec 30, 2022
某学校选课系统GIF验证码数据集 + Baseline模型 + 上下游相关工具

elective-dataset-2021spring 某学校2021春季选课系统GIF验证码数据集(29338张) + 准确率98.4%的Baseline模型 + 上下游相关工具。 数据集采用 知识共享署名-非商业性使用 4.0 国际许可协议 进行许可。 Baseline模型和上下游相关工具采用

xmcp 27 Sep 17, 2021
A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners A PyTorch re-implementation of Mask Autoencoder trai

Tianyu Hua 23 Dec 13, 2022
Angular & Electron desktop UI framework. Angular components for native looking and behaving macOS desktop UI (Electron/Web)

Angular Desktop UI This is a collection for native desktop like user interface components in Angular, especially useful for Electron apps. It starts w

Marc J. Schmidt 49 Dec 22, 2022
Converting CPT to bert form for use

cpt-encoder 将CPT转成bert形式使用 说明 刚刚刷到又出了一种模型:CPT,看论文显示,在很多中文任务上性能比mac bert还好,就迫不及待想把它用起来。 根据对源码的研究,发现该模型在做nlu建模时主要用的encoder部分,也就是bert,因此我将这部分权重转为bert权重类型

黄辉 1 Oct 14, 2021
Repo for parser tensorflow(.pb) and tflite(.tflite)

tfmodel_parser .pb file is the format of tensorflow model .tflite file is the format of tflite model, which usually used in mobile devices before star

1 Dec 23, 2021
DeepFaceLab fork which provides IPython Notebook to use DFL with Google Colab

DFL-Colab — DeepFaceLab fork for Google Colab This project provides you IPython Notebook to use DeepFaceLab with Google Colaboratory. You can create y

779 Jan 05, 2023
This is the code of NeurIPS'21 paper "Towards Enabling Meta-Learning from Target Models".

ST This is the code of NeurIPS 2021 paper "Towards Enabling Meta-Learning from Target Models". If you use any content of this repo for your work, plea

Su Lu 7 Dec 06, 2022
Using LSTM to detect spoofing attacks in an Air-Ground network

Using LSTM to detect spoofing attacks in an Air-Ground network Specifications IDE: Spider Packages: Tensorflow 2.1.0 Keras NumPy Scikit-learn Matplotl

Tiep M. H. 1 Nov 20, 2021
Pytorch implementation of DeepMind's differentiable neural computer paper.

DNC pytorch This is a Pytorch implementation of DeepMind's Differentiable Neural Computer (DNC) architecture introduced in their recent Nature paper:

Yuanpu Xie 91 Nov 21, 2022
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
Intrusion Detection System using ensemble learning (machine learning)

IDS-ML implementation of an intrusion detection system using ensemble machine learning methods Data set This project is carried out using the UNSW-15

4 Nov 25, 2022
Project to create an open-source 6 DoF input device

6DInputs A Project to create open-source 3D printed 6 DoF input devices Note the plural ('6DInputs' and 'devices') in the headings. We would like seve

RepRap Ltd 47 Jul 28, 2022
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023