Learn the Deep Learning for Computer Vision in three steps: theory from base to SotA, code in PyTorch, and space-repetition with Anki

Overview

DeepCourse: Deep Learning for Computer Vision

arthurdouillard.com/deepcourse/

Picture of the website front page with the skill tree

This is a course I'm giving to the French engineering school EPITA each Fall. This course is the new version (as of 2021) of my lectures serie. It's given in around 24h, with sessions of 4 hours each made of 2 hours of lessons and 2 hours of coding.

If you find a mistake (in the lesson, notebook, or quiz), please open an issue here. Likewise, if you have ideas to improve this course (should I cover topic X? etc.), please also open an issue.

Roadmap to do

  • Add all major lessons + notebooks + quiz
  • New architectures
    • Lesson (transformer, new kind of mlp, involution, NAS, what else?)
    • Notebook transformer
    • Notebook MLP-Mixer
    • Quiz
  • Robustness (uncertainty, adversarial attack)
    • Lesson
    • Notebook
    • Quiz
  • Continual Learning + domain generalization + out-of-distribution
    • Lesson
    • Notebooks
    • Quiz
  • Graph Neural Network
  • Lesson
  • Notebooks
  • Quiz
  • Make website look nice on every kind of devices & screens
Owner
Arthur Douillard
PhD Student @ Sorbonne, Research Scientist @ Heuritech, Lecturer @ EPITA
Arthur Douillard
Diagnostic tests for linguistic capacities in language models

LM diagnostics This repository contains the diagnostic datasets and experimental code for What BERT is not: Lessons from a new suite of psycholinguist

61 Jan 02, 2023
Measure WWjj polarization fraction

WlWl Polarization Measure WWjj polarization fraction Paper: arXiv:2109.09924 Notice: This code can only be used for the inference process, if you want

4 Apr 10, 2022
PyTorch implementation of CloudWalk's recent work DenseBody

densebody_pytorch PyTorch implementation of CloudWalk's recent paper DenseBody. Note: For most recent updates, please check out the dev branch. Update

Lingbo Yang 401 Nov 19, 2022
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023
Churn prediction

Churn-prediction Churn-prediction Data preprocessing:: Label encoder is used to normalize the categorical variable Data Transformation:: For each data

1 Sep 28, 2022
The fastai book, published as Jupyter Notebooks

English / Spanish / Korean / Chinese / Bengali / Indonesian The fastai book These notebooks cover an introduction to deep learning, fastai, and PyTorc

fast.ai 17k Jan 07, 2023
A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.

About This repository provides data and code for the paper: Scalable Data Annotation Pipeline for High-Quality Large Speech Datasets Development (subm

Appen Repos 86 Dec 07, 2022
NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)

NExT-QA We reproduce some SOTA VideoQA methods to provide benchmark results for our NExT-QA dataset accepted to CVPR2021 (with 1 'Strong Accept' and 2

Junbin Xiao 50 Nov 24, 2022
PAWS ๐Ÿพ Predicting View-Assignments with Support Samples

This repo provides a PyTorch implementation of PAWS (predicting view assignments with support samples), as described in the paper Semi-Supervised Learning of Visual Features by Non-Parametrically Pre

Facebook Research 437 Dec 23, 2022
DTCN SMP Challenge - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
Minimal But Practical Image Classifier Pipline Using Pytorch, Finetune on ResNet18, Got 99% Accuracy on Own Small Datasets.

PyTorch Image Classifier Updates As for many users request, I released a new version of standared pytorch immage classification example at here: http:

JinTian 106 Nov 06, 2022
A PyTorch implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Caiyong Wang 14 Sep 20, 2022
Fang Zhonghao 13 Nov 19, 2022
DI-smartcross - Decision Intelligence Platform for Traffic Crossing Signal Control

DI-smartcross DI-smartcross - Decision Intelligence Platform for Traffic Crossin

OpenDILab 213 Jan 02, 2023
My implementation of Image Inpainting - A deep learning Inpainting model

Image Inpainting What is Image Inpainting Image inpainting is a restorative process that allows for the fixing or removal of unwanted parts within ima

Joshua V Evans 1 Dec 12, 2021
Simple, efficient and flexible vision toolbox for mxnet framework.

MXbox: Simple, efficient and flexible vision toolbox for mxnet framework. MXbox is a toolbox aiming to provide a general and simple interface for visi

Ligeng Zhu 31 Oct 19, 2019
This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.

PyTorch Infer Utils This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model infer

Alex Gorodnitskiy 11 Mar 20, 2022
High-Fidelity Pluralistic Image Completion with Transformers (ICCV 2021)

Image Completion Transformer (ICT) Project Page | Paper (ArXiv) | Pre-trained Models | Supplemental Material This repository is the official pytorch i

Ziyu Wan 243 Jan 03, 2023
Implementation of "Large Steps in Inverse Rendering of Geometry"

Large Steps in Inverse Rendering of Geometry ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), December 2021. Baptiste Nicolet ยท Alec Jacob

RGL: Realistic Graphics Lab 274 Jan 06, 2023
Grounding Representation Similarity with Statistical Testing

Grounding Representation Similarity with Statistical Testing This repo contains code to replicate the results in our paper, which evaluates representa

26 Dec 02, 2022