A library for optimization on Riemannian manifolds

Overview

TensorFlow RiemOpt

PyPI arXiv Build Status Coverage Status Code style: black License

A library for manifold-constrained optimization in TensorFlow.

Installation

To install the latest development version from GitHub:

pip install git+https://github.com/master/tensorflow-riemopt.git

To install a package from PyPI:

pip install tensorflow-riemopt

Features

The core package implements concepts in differential geometry, such as manifolds and Riemannian metrics with associated exponential and logarithmic maps, geodesics, retractions, and transports. For manifolds, where closed-form expressions are not available, the library provides numerical approximations.

import tensorflow_riemopt as riemopt

S = riemopt.manifolds.Sphere()

x = S.projx(tf.constant([0.1, -0.1, 0.1]))
u = S.proju(x, tf.constant([1., 1., 1.]))
v = S.proju(x, tf.constant([-0.7, -1.4, 1.4]))

y = S.exp(x, v)

u_ = S.transp(x, y, u)
v_ = S.transp(x, y, v)

Manifolds

  • manifolds.Cholesky - manifold of lower triangular matrices with positive diagonal elements
  • manifolds.Euclidian - unconstrained manifold with the Euclidean metric
  • manifolds.Grassmannian - manifold of p-dimensional linear subspaces of the n-dimensional space
  • manifolds.Hyperboloid - manifold of n-dimensional hyperbolic space embedded in the n+1-dimensional Minkowski space
  • manifolds.Poincare - the Poincaré ball model of the hyperbolic space
  • manifolds.Product - Cartesian product of manifolds
  • manifolds.SPDAffineInvariant - manifold of symmetric positive definite (SPD) matrices endowed with the affine-invariant metric
  • manifolds.SPDLogCholesky - SPD manifold with the Log-Cholesky metric
  • manifolds.SPDLogEuclidean - SPD manifold with the Log-Euclidean metric
  • manifolds.SpecialOrthogonal - manifold of rotation matrices
  • manifolds.Sphere - manifold of unit-normalized points
  • manifolds.StiefelEuclidean - manifold of orthonormal p-frames in the n-dimensional space endowed with the Euclidean metric
  • manifolds.StiefelCanonical - Stiefel manifold with the canonical metric
  • manifolds.StiefelCayley - Stiefel manifold the retraction map via an iterative Cayley transform

Optimizers

Constrained optimization algorithms work as drop-in replacements for Keras optimizers for sparse and dense updates in both Eager and Graph modes.

  • optimizers.RiemannianSGD - Riemannian Gradient Descent
  • optimizers.RiemannianAdam - Riemannian Adam and AMSGrad
  • optimizers.ConstrainedRMSProp - Constrained RMSProp

Layers

  • layers.ManifoldEmbedding - constrained keras.layers.Embedding layer

Examples

  • SPDNet - Huang, Zhiwu, and Luc Van Gool. "A Riemannian network for SPD matrix learning." Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. AAAI Press, 2017.
  • LieNet - Huang, Zhiwu, et al. "Deep learning on Lie groups for skeleton-based action recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
  • GrNet - Huang, Zhiwu, Jiqing Wu, and Luc Van Gool. "Building Deep Networks on Grassmann Manifolds." AAAI. AAAI Press, 2018.
  • Hyperbolic Neural Network - Ganea, Octavian, Gary Bécigneul, and Thomas Hofmann. "Hyperbolic neural networks." Advances in neural information processing systems. 2018.
  • Poincaré GloVe - Tifrea, Alexandru, Gary Becigneul, and Octavian-Eugen Ganea. "Poincaré Glove: Hyperbolic Word Embeddings." International Conference on Learning Representations. 2018.

References

If you find TensorFlow RiemOpt useful in your research, please cite:

@misc{smirnov2021tensorflow,
      title={TensorFlow RiemOpt: a library for optimization on Riemannian manifolds},
      author={Oleg Smirnov},
      year={2021},
      eprint={2105.13921},
      archivePrefix={arXiv},
      primaryClass={cs.MS}
}

Acknowledgment

TensorFlow RiemOpt was inspired by many similar projects:

  • Manopt, a matlab toolbox for optimization on manifolds
  • Pymanopt, a Python toolbox for optimization on manifolds
  • Geoopt: Riemannian Optimization in PyTorch
  • Geomstats, an open-source Python package for computations and statistics on nonlinear manifolds

License

The code is MIT-licensed.

You might also like...
Distributed Asynchronous Hyperparameter Optimization better than HyperOpt.
Distributed Asynchronous Hyperparameter Optimization better than HyperOpt.

UltraOpt : Distributed Asynchronous Hyperparameter Optimization better than HyperOpt. UltraOpt is a simple and efficient library to minimize expensive

Official code for paper "Optimization for Oriented Object Detection via Representation Invariance Loss".

Optimization for Oriented Object Detection via Representation Invariance Loss By Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Xue Yang, and Yunpeng Dong. Th

Keras + Hyperopt: A very simple wrapper for convenient hyperparameter optimization

This project is now archived. It's been fun working on it, but it's time for me to move on. Thank you for all the support and feedback over the last c

Bayesian optimization in PyTorch

BoTorch is a library for Bayesian Optimization built on PyTorch. BoTorch is currently in beta and under active development! Why BoTorch ? BoTorch Prov

optimization routines for hyperparameter tuning
optimization routines for hyperparameter tuning

Optunity is a library containing various optimizers for hyperparameter tuning. Hyperparameter tuning is a recurrent problem in many machine learning t

Distributed Asynchronous Hyperparameter Optimization in Python

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

Hyper-parameter optimization for sklearn

hyperopt-sklearn Hyperopt-sklearn is Hyperopt-based model selection among machine learning algorithms in scikit-learn. See how to use hyperopt-sklearn

A Python implementation of global optimization with gaussian processes.
A Python implementation of global optimization with gaussian processes.

Bayesian Optimization Pure Python implementation of bayesian global optimization with gaussian processes. PyPI (pip): $ pip install bayesian-optimizat

Safe Bayesian Optimization
Safe Bayesian Optimization

SafeOpt - Safe Bayesian Optimization This code implements an adapted version of the safe, Bayesian optimization algorithm, SafeOpt [1], [2]. It also p

Comments
  • Projection on SPDs is not projecting onto SPDs

    Projection on SPDs is not projecting onto SPDs

    Hi, nice to see another package doing optimizationon manifolds! I have not yet had the time to check this versus what pymanopt is doing (I think they use tensor flow as a backend, too?) But I just noticed that

    https://github.com/master/tensorflow-manopt/blob/93402f6770d5b3c45f232340fddfa92a7126f19a/tensorflow_manopt/manifolds/symmetric_positive.py#L37-L41

    This might be wrong. For SPDs, the characteristic property is, that all eigenvalues are positive, so this projection is not projection onto the manifold (of SPDs) but onto the set of positive semidefinite matrices. There is no projection onto the SPDs since that set is open in the set of (symmetric) matrices.

    opened by kellertuer 2
  • GrNet produces NaN entries in input tensor

    GrNet produces NaN entries in input tensor

    Hi! First of all, really appreciate you guys taking the time to build a much required riemmannian geometry based package in tensorflow. It is proving to be quite useful for me. However, I recently ran the [GrNet code] (https://github.com/master/tensorflow-riemopt/tree/master/examples/grnet) with the AFEW dataset(the default dataset used in the code) on my machine and it seems at some point the input tensors get filled with NaN values. I tried tinkering with the learning rate and a few other usual things that could determine the cause of such NaN value in a dl model but it seems to be of no use. Any idea as to why this might be the case- is the code still been checked for bugs or am I missing something? Thanks in advance!

    opened by SouvikBan 2
Releases(v0.1.1)
Owner
Oleg Smirnov
Oleg Smirnov
Toontown House CT Edition

Toontown House: Classic Toontown House Classic source that should just work. ❓ W

Open Source Toontown Servers 5 Jan 09, 2022
[ACM MM 2021] Joint Implicit Image Function for Guided Depth Super-Resolution

Joint Implicit Image Function for Guided Depth Super-Resolution This repository contains the code for: Joint Implicit Image Function for Guided Depth

hawkey 78 Dec 27, 2022
FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data

FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data, a relatively complete set of integrated multi-source data download terminal software fast is developed. The softw

ChangChuntao 23 Dec 31, 2022
Official implementation of the ICLR 2021 paper

You Only Need Adversarial Supervision for Semantic Image Synthesis Official PyTorch implementation of the ICLR 2021 paper "You Only Need Adversarial S

Bosch Research 272 Dec 28, 2022
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 28 Nov 25, 2022
ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

Yanda Meng 14 May 13, 2022
An index of algorithms for learning causality with data

awesome-causality-algorithms An index of algorithms for learning causality with data. Please cite our survey paper if this index is helpful. @article{

Ruocheng Guo 2.3k Jan 08, 2023
Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks

Introduction This repository contains the modified caffe library and network architectures for our paper "Automated Melanoma Recognition in Dermoscopy

Lequan Yu 47 Nov 24, 2022
Dual Attention Network for Scene Segmentation (CVPR2019)

Dual Attention Network for Scene Segmentation(CVPR2019) Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang,and Hanqing Lu Introduction W

Jun Fu 2.2k Dec 28, 2022
Implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork.

YOLOv4-large This is the implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork. YOLOv4-CSP YOLOv4-tiny YOLOv4-

Kin-Yiu, Wong 2k Jan 02, 2023
Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. ICCV 2021.

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision Download links and PyTorch implementation of "Towers of Ba

Blakey Wu 40 Dec 14, 2022
An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym

gym-idsgame An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym gym-idsgame is a reinforcement learning environment for simulating at

Kim Hammar 29 Dec 03, 2022
Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding by Qiaole Dong*, Chenjie Cao*, Yanwei Fu Paper and Supple

Qiaole Dong 190 Dec 27, 2022
Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples / ICLR 2018

Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples This project is for the paper "Training Confidence-Calibrated Clas

168 Nov 29, 2022
Rule-based Customer Segmentation

Rule-based Customer Segmentation Business Problem A game company wants to create level-based new customer definitions (personas) by using some feature

Cem Çaluk 2 Jan 03, 2022
Adaptive, interpretable wavelets across domains (NeurIPS 2021)

Adaptive wavelets Wavelets which adapt given data (and optionally a pre-trained model). This yields models which are faster, more compressible, and mo

Yu Group 50 Dec 16, 2022
Libtorch yolov3 deepsort

Overview It is for my undergrad thesis in Tsinghua University. There are four modules in the project: Detection: YOLOv3 Tracking: SORT and DeepSORT Pr

Xu Wei 226 Dec 13, 2022
TART - A PyTorch implementation for Transition Matrix Representation of Trees with Transposed Convolutions

TART This project is a PyTorch implementation for Transition Matrix Representati

Lee Sael 2 Jan 19, 2022
Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction

GraviCap Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction. Gravity-Aware Monocular 3D Human-Object

Rishabh Dabral 15 Dec 09, 2022
Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.

Nonuniform-to-Uniform Quantization This repository contains the training code of N2UQ introduced in our CVPR 2022 paper: "Nonuniform-to-Uniform Quanti

Zechun Liu 60 Dec 28, 2022