NumPy String-Indexed is a NumPy extension that allows arrays to be indexed using descriptive string labels

Overview

NumPy String-Indexed

PyPI Version Python Versions

NumPy String-Indexed is a NumPy extension that allows arrays to be indexed using descriptive string labels, rather than conventional zero-indexing. When a friendly matrix object is initialized, labels are assigned to each array index and each dimension, and they stick to the array after NumPy-style operations such as transposing, concatenating, and aggregating. This prevents Python programmers from having to keep track mentally of what each axis and each index represents, instead making each reference to the array in code naturally self-documenting.

NumPy String-Indexed is especially useful for applications like machine learning, scientific computing, and data science, where there is heavy use of multidimensional arrays.

The friendly matrix object is implemented as a lightweight wrapper around a NumPy ndarray. It's easy to add to a new or existing project to make it easier to maintain code, and has negligible memory and performance overhead compared to the size of array (O(x + y + z) vs. O(xyz)).

Basic functionality

It's recommended to import NumPy String-Indexed idiomatically as fm:

import friendly_matrix as fm

Labels are provided during object construction and can optionally be used in place of numerical indices for slicing and indexing.

The example below shows how to construct a friendly matrix containing an image with three color channels:

image = fm.ndarray(
	numpy_ndarray_image,  # np.ndarray with shape (3, 100, 100)
	dim_names=['color_channel', 'top_to_bottom', 'left_to_right'],
	color_channel=['R', 'G', 'B'])

The matrix can then be sliced like this:

# friendly matrix with shape (100, 100)
r_channel = image(color_channel='R')

# an integer
g_top_left_pixel_value = image('G', 0, 0)

# friendly matrix with shape (2, 100, 50)
br_channel_left_half = image(
	color_channel=('B', 'R'),
	left_to_right=range(image.dim_length('left_to_right') // 2))

Documentation

Full documentation can be found here. Below is a brief overview of Friendly Matrix functionality.

Matrix operations

Friendly matrix objects can be operated on just like NumPy ndarrays with minimal overhead. The package contains separate implementations of most of the relevant NumPy ndarray operations, taking advantage of labels. For example:

side_by_side = fm.concatenate((image1, image2), axis='left_to_right')

An optimized alternative is to perform label-less operations, by adding "_A" (for "array") to the operation name:

side_by_side_arr = fm.concatenate_A((image1, image2), axis='left_to_right')

If it becomes important to optimize within a particular scope, it's recommended to shed labels before operating:

for image in huge_list:
	image_processor(image.A)

Computing matrices

A friendly matrix is an ideal structure for storing and retrieving the results of computations over multiple variables. The compute_ndarray() function executes computations over all values of the input arrays and stores them in a new Friendly Matrix ndarray instance in a single step:

'''Collect samples from a variety of normal distributions'''

import numpy as np

n_samples_list = [1, 10, 100, 1000]
mean_list = list(range(-21, 21))
var_list = [1E1, 1E0, 1E-1, 1E-2, 1E-3]

results = fm.compute_ndarray(
	['# Samples', 'Mean', 'Variance']
	n_samples_list,
	mean_list,
	var_list,
	normal_sampling_function,
	dtype=np.float32)

# friendly matrices can be sliced using dicts
print(results({
	'# Samples': 100,
	'Mean': 0,
	'Variance': 1,
}))

Formatting matrices

The formatted() function displays a friendly matrix as a nested list. This is useful for displaying the labels and values of smaller matrices or slice results:

mean_0_results = results({
	'# Samples': (1, 1000),
	'Mean': 0,
	'Variance': (10, 1, 0.1),
})
formatted = fm.formatted(
	mean_0_results,
	formatter=lambda n: round(n, 1))

print(formatted)

'''
Example output:

# Samples = 1:
	Variance = 10:
		2.2
	Variance = 1:
		-0.9
	Variance = 0.1:
		0.1
# Samples = 1000:
	Variance = 10:
		-0.2
	Variance = 1:
		-0.0
	Variance = 0.1:
		0.0
'''

Installation

pip install numpy-string-indexed

NumPy String-Indexed is listed in PyPI and can be installed with pip.

Prerequisites: NumPy String-Indexed 0.0.1 requires Python 3 and a compatible installation of the NumPy Python package.

Discussion and support

NumPy String-Indexed is available under the MIT License.

Owner
Aitan Grossman
Aitan Grossman
PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

Tencent 633 Dec 28, 2022
Repository for Project Insight: NLP as a Service

Project Insight NLP as a Service Contents Introduction Features Installation Setup and Documentation Project Details Demonstration Directory Details H

Abhishek Kumar Mishra 286 Dec 06, 2022
This project converts your human voice input to its text transcript and to an automated voice too.

Human Voice to Automated Voice & Text Introduction: In this project, whenever you'll speak, it will turn your voice into a robot voice and furthermore

Hassan Shahzad 3 Oct 15, 2021
Contains descriptions and code of the mini-projects developed in various programming languages

TexttoSpeechAndLanguageTranslator-project introduction A pleasant application where the client will be given buttons like play,reset and exit. The cli

Adarsh Reddy 1 Dec 22, 2021
:house_with_garden: Fast & easy transfer learning for NLP. Harvesting language models for the industry. Focus on Question Answering.

(Framework for Adapting Representation Models) What is it? FARM makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built u

deepset 1.6k Dec 27, 2022
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
voice2json is a collection of command-line tools for offline speech/intent recognition on Linux

Command-line tools for speech and intent recognition on Linux

Michael Hansen 988 Jan 04, 2023
This repository contains Python scripts for extracting linguistic features from Filipino texts.

Filipino Text Linguistic Feature Extractors This repository contains scripts for extracting linguistic features from Filipino texts. The scripts were

Joseph Imperial 1 Oct 05, 2021
CorNet Correlation Networks for Extreme Multi-label Text Classification

CorNet Correlation Networks for Extreme Multi-label Text Classification Prerequisites python==3.6.3 pytorch==1.2.0 torchgpipe==0.0.5 click==7.0 ruamel

Guangxu Xun 38 Dec 31, 2022
Synthetic data for the people.

zpy: Synthetic data in Blender. Website • Install • Docs • Examples • CLI • Contribute • Licence Abstract Collecting, labeling, and cleaning data for

Zumo Labs 253 Dec 21, 2022
Interactive Jupyter Notebook Environment for using the GPT-3 Instruct API

gpt3-instruct-sandbox Interactive Jupyter Notebook Environment for using the GPT-3 Instruct API Description This project updates an existing GPT-3 san

312 Jan 03, 2023
Using BERT-based models for toxic span detection

SemEval 2021 Task 5: Toxic Spans Detection: Task: Link to SemEval-2021: Task 5 Toxic Span Detection is https://competitions.codalab.org/competitions/2

Ravika Nagpal 1 Jan 04, 2022
Nateve compiler developed with python.

Adam Adam is a Nateve Programming Language compiler developed using Python. Nateve Nateve is a new general domain programming language open source ins

Nateve 7 Jan 15, 2022
Blackstone is a spaCy model and library for processing long-form, unstructured legal text

Blackstone Blackstone is a spaCy model and library for processing long-form, unstructured legal text. Blackstone is an experimental research project f

ICLR&D 579 Jan 08, 2023
Code associated with the Don't Stop Pretraining ACL 2020 paper

dont-stop-pretraining Code associated with the Don't Stop Pretraining ACL 2020 paper Citation @inproceedings{dontstoppretraining2020, author = {Suchi

AI2 449 Jan 04, 2023
Two-stage text summarization with BERT and BART

Two-Stage Text Summarization Description We experiment with a 2-stage summarization model on CNN/DailyMail dataset that combines the ability to filter

Yukai Yang (Alexis) 6 Oct 22, 2022
Code for "Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments".

Code for "Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments".

Yu Zhang 50 Nov 08, 2022
Curso práctico: NLP de cero a cien 🤗

Curso Práctico: NLP de cero a cien Comprende todos los conceptos y arquitecturas clave del estado del arte del NLP y aplícalos a casos prácticos utili

Somos NLP 147 Jan 06, 2023
Creating a chess engine using GPT-3

GPT3Chess Creating a chess engine using GPT-3 Code for my article : https://towardsdatascience.com/gpt-3-play-chess-d123a96096a9 My game (white) vs GP

19 Dec 17, 2022
Cherche (search in French) allows you to create a neural search pipeline using retrievers and pre-trained language models as rankers.

Cherche (search in French) allows you to create a neural search pipeline using retrievers and pre-trained language models as rankers. Cherche is meant to be used with small to medium sized corpora. C

Raphael Sourty 224 Nov 29, 2022