A minimalist implementation of score-based diffusion model

Overview

sdeflow-light

This is a minimalist codebase for training score-based diffusion models (supporting MNIST and CIFAR-10) used in the following paper

"A Variational Perspective on Diffusion-Based Generative Models and Score Matching" by Chin-Wei Huang, Jae Hyun Lim and Aaron Courville [arXiv]

Also see the concurrent work by Yang Song & Conor Durkan where they used the same idea to obtain state-of-the-art likelihood estimates.

Experiments on Swissroll

Here's a Colab notebook which contains an example for training a model on the Swissroll dataset.

Open In Colab

In this notebook, you'll see how to train the model using score matching loss, how to evaluate the ELBO of the plug-in reverse SDE, and how to sample from it. It also includes a snippet to sample from a family of plug-in reverse SDEs (parameterized by λ) mentioned in Appendix C of the paper.

Below are the trajectories of λ=0 (the reverse SDE used in Song et al.) and λ=1 (equivalent ODE) when we plug in the learned score / drift function. This corresponds to Figure 5 of the paper. drawing drawing

Experiments on MNIST and CIFAR-10

This repository contains one main training loop (train_img.py). The model is trained to minimize the denoising score matching loss by calling the .dsm(x) loss function, and evaluated using the following ELBO, by calling .elbo_random_t_slice(x)

score-elbo

where the divergence (sum of the diagonal entries of the Jacobian) is estimated using the Hutchinson trace estimator.

It's a minimalist codebase in the sense that we do not use fancy optimizer (we only use Adam with the default setup) or learning rate scheduling. We use the modified U-net architecture from Denoising Diffusion Probabilistic Models by Jonathan Ho.

A key difference from Song et al. is that instead of parameterizing the score function s, here we parameterize the drift term a (where they are related by a=gs and g is the diffusion coefficient). That is, a is the U-net.

Parameterization: Our original generative & inference SDEs are

  • dX = mu dt + sigma dBt
  • dY = (-mu + sigma*a) ds + sigma dBs

We reparameterize it as

  • dX = (ga - f) dt + g dBt
  • dY = f ds + g dBs

by letting mu = ga - f, and sigma = g. (since f and g are fixed, we only have one degree of freedom, which is a). Alternatively, one can parameterize s (e.g. using the U-net), and just let a=gs.

How it works

Here's an example command line for running an experiment

python train_img.py --dataroot=[DATAROOT] --saveroot=[SAVEROOT] --expname=[EXPNAME] \
    --dataset=cifar --print_every=2000 --sample_every=2000 --checkpoint_every=2000 --num_steps=1000 \
    --batch_size=128 --lr=0.0001 --num_iterations=100000 --real=True --debias=False

Setting --debias to be False uses uniform sampling for the time variable, whereas setting it to be True uses a non-uniform sampling strategy to debias the gradient estimate described in the paper. Below are the bits-per-dim and the corresponding standard error of the test set recorded during training (orange for --debias=True and blue for --debias=False).

drawing drawing

Here are some samples (debiased on the right)

drawing drawing

It takes about 14 hrs to finish 100k iterations on a V100 GPU.

Owner
Chin-Wei Huang
Chin-Wei Huang
[NeurIPS 2021] Code for Unsupervised Learning of Compositional Energy Concepts

Unsupervised Learning of Compositional Energy Concepts This is the pytorch code for the paper Unsupervised Learning of Compositional Energy Concepts.

45 Nov 30, 2022
This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Jiaqi Wang 42 Jan 07, 2023
Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes (CVPR 2021 Oral)

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces Official code release for NGLOD. For technical details, please refer t

659 Dec 27, 2022
Forecasting directional movements of stock prices for intraday trading using LSTM and random forest

Forecasting directional movements of stock-prices for intraday trading using LSTM and random-forest https://arxiv.org/abs/2004.10178 Pushpendu Ghosh,

Pushpendu Ghosh 270 Dec 24, 2022
The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction".

LEAR The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction". See below for an overview of

杨攀 93 Jan 07, 2023
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.

pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit

pgmpy 2.2k Jan 03, 2023
public repo for ESTER dataset and modeling (EMNLP'21)

Project / Paper Introduction This is the project repo for our EMNLP'21 paper: https://arxiv.org/abs/2104.08350 Here, we provide brief descriptions of

PlusLab 19 Oct 27, 2022
🥇Samsung AI Challenge 2021 1등 솔루션입니다🥇

MoT - Molecular Transformer Large-scale Pretraining for Molecular Property Prediction Samsung AI Challenge for Scientific Discovery This repository is

Jungwoo Park 44 Dec 03, 2022
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* This code is based on MMdetecti

sunshine.lwt 112 Jan 05, 2023
meProp: Sparsified Back Propagation for Accelerated Deep Learning (ICML 2017)

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters.

Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters. Overview This project is a Torch implementation for our CVPR 2016 paper

Jianwei Yang 278 Dec 25, 2022
Spatiotemporal resampling methods for mlr3

mlr3spatiotempcv Package website: release | dev Spatiotemporal resampling methods for mlr3. This package extends the mlr3 package framework with spati

45 Nov 21, 2022
Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER 🦌 🦒 Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEE

33 Dec 23, 2022
Image transformations designed for Scene Text Recognition (STR) data augmentation. Published at ICCV 2021 Workshop on Interactive Labeling and Data Augmentation for Vision.

Data Augmentation for Scene Text Recognition (ICCV 2021 Workshop) (Pronounced as "strog") Paper Arxiv Why it matters? Scene Text Recognition (STR) req

Rowel Atienza 152 Dec 28, 2022
Özlem Taşkın 0 Feb 23, 2022
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning

radar-to-lidar-place-recognition This page is the coder of a pre-print, implemented by PyTorch. If you have some questions on this project, please fee

Huan Yin 37 Oct 09, 2022
A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning

A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning Website • About • Installation • Using OpenDR

OpenDR 304 Dec 28, 2022
ML course - EPFL Machine Learning Course, Fall 2021

EPFL Machine Learning Course CS-433 Machine Learning Course, Fall 2021 Repository for all lecture notes, labs and projects - resources, code templates

EPFL Machine Learning and Optimization Laboratory 1k Jan 04, 2023
Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021)

EMI-FGSM This repository contains code to reproduce results from the paper: Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021) Xiaosen Wa

John Hopcroft Lab at HUST 10 Sep 26, 2022
FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data

FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data, a relatively complete set of integrated multi-source data download terminal software fast is developed. The softw

ChangChuntao 23 Dec 31, 2022