Forecasting directional movements of stock prices for intraday trading using LSTM and random forest

Overview

Forecasting directional movements of stock-prices for intraday trading using LSTM and random-forest

https://arxiv.org/abs/2004.10178
Pushpendu Ghosh, Ariel Neufeld, Jajati K Sahoo

We employ both random forests on the one hand and LSTM networks (more precisely CuDNNLSTM) on the other hand as training methodology to analyze their effectiveness in forecasting out-of-sample directional movements of constituent stocks of the S&P 500, for intraday trading, from January 1993 till December 2018.

Requirements

pip install scikit-learn==0.20.4
pip install tensorflow==1.14.0

Plots

We plot three important metrics to quantify the effectiveness of our model: Intraday-240,3-LSTM.py and Intraday-240,3-RF.py, in the period January 1993 till December 2018.
Intraday LSTM: Intraday-240,3-LSTM.py
Intraday RF: Intraday-240,3-RF.py
Next Day LSTM, krauss18: NextDay-240,1-LSTM.py [1]
Next Day RF, krauss17: NextDay-240,1-RF.py [2]

Cumulative Money growth (after transaction cost)

Average daily returns (after transaction cost)

Average (Annualized) Sharpe ratio (after transaction cost)

Appendix

Feature Importance

This figure analyzes the Sharpe Ratio achieved when single features are used instead of our 3-features for the same intraday trading strategy. It hence analyzes which single feature is important.
The result suggest that or (returns from close price to next day open price) has the highest importance. This is justifiable by the fact that it is the only feature which considers the latest available data (the trading day's open price) at the time of making the trading decision. We also see that our 3-features setting achieves the highest Sharpe Ratio and hence outperforms each single feature.

LSTM hyperparameter tuning

We see that the amount of 25 cells for our chosen LSTM architecture to be at least as good as other amounts between 5 and 100. We have chosen 25 cells also for the ease of comparison with Fischer & Krauss (2018)

Benchmark against other LSTM architectures

We consider various new LSTM architectures. Note that the other LSTM architectures involve much more parameters than the one we chose for our empirical study and do not achieve better results in terms of Sharpe Ratio. Moreover, we also compare our LSTM architecture with GRU, which is a relatively simpler variation of LSTM, and see that it generates reasonably good but still slightly lower Sharpe ratio than our chosen LSTM architecture.

References to the LSTM models:

  1. Single Layer GRU: https://arxiv.org/abs/1412.3555
  2. Stacked LSTM: https://www.sciencedirect.com/science/article/pii/S1877050920304865
  3. Stacked Residual LSTM: https://arxiv.org/abs/1610.03098

Acknowledgements

The first author gratefully acknowledges the NTU-India Connect Research Internship Programme which allowed him to carry out part of this research project while visiting the Nanyang Technological University, Singapore.
The second author gratefully acknowledges financial support by his Nanyang Assistant Professorship Grant (NAP Grant) Machine Learning based Algorithms in Finance and Insurance.

References

[1] Fischer, Thomas, and Christopher Krauss. "Deep learning with long short-term memory networks for financial market predictions." European Journal of Operational Research 270.2 (2018): 654-669.
[2] Krauss, Christopher, Xuan Anh Do, and Nicolas Huck. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500." European Journal of Operational Research 259.2 (2017): 689-702.

Owner
Pushpendu Ghosh
Pushpendu Ghosh
Face and Body Tracking for VRM 3D models on the web.

Kalidoface 3D - Face and Full-Body tracking for Vtubing on the web! A sequal to Kalidoface which supports Live2D avatars, Kalidoface 3D is a web app t

Rich 257 Jan 02, 2023
UFT - Universal File Transfer With Python

UFT 2.0.0 UFT (Universal File Transfer) is a CLI tool , which can be used to upl

Merwin 1 Feb 18, 2022
This is a beginner-friendly repo to make a collection of some unique and awesome projects. Everyone in the community can benefit & get inspired by the amazing projects present over here.

Awesome-Projects-Collection Quality over Quantity :) What to do? Add some unique and amazing projects as per your favourite tech stack for the communi

Rohan Sharma 178 Jan 01, 2023
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Liu Minghua 73 Dec 15, 2022
Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning"

Prompt-Tuning Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning" Currently, we support the following huggigface models: Bart

Andrew Zeng 36 Dec 19, 2022
This is the code of NeurIPS'21 paper "Towards Enabling Meta-Learning from Target Models".

ST This is the code of NeurIPS 2021 paper "Towards Enabling Meta-Learning from Target Models". If you use any content of this repo for your work, plea

Su Lu 7 Dec 06, 2022
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models Jonathan Ho, Ajay Jain, Pieter Abbeel Paper: https://arxiv.org/abs/2006.11239 Website: https://hojonathanho.g

Jonathan Ho 1.5k Jan 08, 2023
Code for CVPR 2018 paper --- Texture Mapping for 3D Reconstruction with RGB-D Sensor

G2LTex This repository contains the implementation of "Texture Mapping for 3D Reconstruction with RGB-D Sensor (CVPR2018)" based on mvs-texturing. Due

Fu Yanping(付燕平) 129 Dec 30, 2022
This toolkit provides codes to download and pre-process the SLUE datasets, train the baseline models, and evaluate SLUE tasks.

slue-toolkit We introduce Spoken Language Understanding Evaluation (SLUE) benchmark. This toolkit provides codes to download and pre-process the SLUE

ASAPP Research 39 Sep 21, 2022
Python code for the paper How to scale hyperparameters for quickshift image segmentation

How to scale hyperparameters for quickshift image segmentation Python code for the paper How to scale hyperparameters for quickshift image segmentatio

0 Jan 25, 2022
Library for 8-bit optimizers and quantization routines.

bitsandbytes Bitsandbytes is a lightweight wrapper around CUDA custom functions, in particular 8-bit optimizers and quantization functions. Paper -- V

Facebook Research 687 Jan 04, 2023
The 3rd place solution for competition

The 3rd place solution for competition "Lyft Motion Prediction for Autonomous Vehicles" at Kaggle Team behind this solution: Artsiom Sanakoyeu [Homepa

Artsiom 104 Nov 22, 2022
PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'

Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning This repository is for EMSRDPN introduced in the foll

7 Feb 10, 2022
Official implementation for the paper: Generating Smooth Pose Sequences for Diverse Human Motion Prediction

Generating Smooth Pose Sequences for Diverse Human Motion Prediction This is official implementation for the paper Generating Smooth Pose Sequences fo

Wei Mao 28 Dec 10, 2022
Python Auto-ML Package for Tabular Datasets

Tabular-AutoML AutoML Package for tabular datasets Tabular dataset tuning is now hassle free! Run one liner command and get best tuning and processed

Sagnik Roy 18 Nov 20, 2022
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Video Object Segmentation Language as Queries for Referring Video Object S

Jonas Wu 232 Dec 29, 2022
Domain Generalization with MixStyle, ICLR'21.

MixStyle This repo contains the code of our ICLR'21 paper, "Domain Generalization with MixStyle". The OpenReview link is https://openreview.net/forum?

Kaiyang 208 Dec 28, 2022
Simple and ready-to-use tutorials for TensorFlow

TensorFlow World To support maintaining and upgrading this project, please kindly consider Sponsoring the project developer. Any level of support is a

Amirsina Torfi 4.5k Dec 23, 2022
Code & Models for Temporal Segment Networks (TSN) in ECCV 2016

Temporal Segment Networks (TSN) We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation fo

1.4k Jan 01, 2023
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 126 Jan 06, 2023