Research code for ECCV 2020 paper "UNITER: UNiversal Image-TExt Representation Learning"

Overview

UNITER: UNiversal Image-TExt Representation Learning

This is the official repository of UNITER (ECCV 2020). This repository currently supports finetuning UNITER on NLVR2, VQA, VCR, SNLI-VE, Image-Text Retrieval for COCO and Flickr30k, and Referring Expression Comprehensions (RefCOCO, RefCOCO+, and RefCOCO-g). Both UNITER-base and UNITER-large pre-trained checkpoints are released. UNITER-base pre-training with in-domain data is also available.

Overview of UNITER

Some code in this repo are copied/modified from opensource implementations made available by PyTorch, HuggingFace, OpenNMT, and Nvidia. The image features are extracted using BUTD.

Requirements

We provide Docker image for easier reproduction. Please install the following:

Our scripts require the user to have the docker group membership so that docker commands can be run without sudo. We only support Linux with NVIDIA GPUs. We test on Ubuntu 18.04 and V100 cards. We use mixed-precision training hence GPUs with Tensor Cores are recommended.

Quick Start

NOTE: Please run bash scripts/download_pretrained.sh $PATH_TO_STORAGE to get our latest pretrained checkpoints. This will download both the base and large models.

We use NLVR2 as an end-to-end example for using this code base.

  1. Download processed data and pretrained models with the following command.

    bash scripts/download_nlvr2.sh $PATH_TO_STORAGE

    After downloading you should see the following folder structure:

    ├── ann
    │   ├── dev.json
    │   └── test1.json
    ├── finetune
    │   ├── nlvr-base
    │   └── nlvr-base.tar
    ├── img_db
    │   ├── nlvr2_dev
    │   ├── nlvr2_dev.tar
    │   ├── nlvr2_test
    │   ├── nlvr2_test.tar
    │   ├── nlvr2_train
    │   └── nlvr2_train.tar
    ├── pretrained
    │   └── uniter-base.pt
    └── txt_db
        ├── nlvr2_dev.db
        ├── nlvr2_dev.db.tar
        ├── nlvr2_test1.db
        ├── nlvr2_test1.db.tar
        ├── nlvr2_train.db
        └── nlvr2_train.db.tar
    
  2. Launch the Docker container for running the experiments.

    # docker image should be automatically pulled
    source launch_container.sh $PATH_TO_STORAGE/txt_db $PATH_TO_STORAGE/img_db \
        $PATH_TO_STORAGE/finetune $PATH_TO_STORAGE/pretrained

    The launch script respects $CUDA_VISIBLE_DEVICES environment variable. Note that the source code is mounted into the container under /src instead of built into the image so that user modification will be reflected without re-building the image. (Data folders are mounted into the container separately for flexibility on folder structures.)

  3. Run finetuning for the NLVR2 task.

    # inside the container
    python train_nlvr2.py --config config/train-nlvr2-base-1gpu.json
    
    # for more customization
    horovodrun -np $N_GPU python train_nlvr2.py --config $YOUR_CONFIG_JSON
  4. Run inference for the NLVR2 task and then evaluate.

    # inference
    python inf_nlvr2.py --txt_db /txt/nlvr2_test1.db/ --img_db /img/nlvr2_test/ \
        --train_dir /storage/nlvr-base/ --ckpt 6500 --output_dir . --fp16
    
    # evaluation
    # run this command outside docker (tested with python 3.6)
    # or copy the annotation json into mounted folder
    python scripts/eval_nlvr2.py ./results.csv $PATH_TO_STORAGE/ann/test1.json

    The above command runs inference on the model we trained. Feel free to replace --train_dir and --ckpt with your own model trained in step 3. Currently we only support single GPU inference.

  5. Customization

    # training options
    python train_nlvr2.py --help
    • command-line argument overwrites JSON config files
    • JSON config overwrites argparse default value.
    • use horovodrun to run multi-GPU training
    • --gradient_accumulation_steps emulates multi-gpu training
  6. Misc.

    # text annotation preprocessing
    bash scripts/create_txtdb.sh $PATH_TO_STORAGE/txt_db $PATH_TO_STORAGE/ann
    
    # image feature extraction (Tested on Titan-Xp; may not run on latest GPUs)
    bash scripts/extract_imgfeat.sh $PATH_TO_IMG_FOLDER $PATH_TO_IMG_NPY
    
    # image preprocessing
    bash scripts/create_imgdb.sh $PATH_TO_IMG_NPY $PATH_TO_STORAGE/img_db

    In case you would like to reproduce the whole preprocessing pipeline.

Downstream Tasks Finetuning

VQA

NOTE: train and inference should be ran inside the docker container

  1. download data
    bash scripts/download_vqa.sh $PATH_TO_STORAGE
    
  2. train
    horovodrun -np 4 python train_vqa.py --config config/train-vqa-base-4gpu.json \
        --output_dir $VQA_EXP
    
  3. inference
    python inf_vqa.py --txt_db /txt/vqa_test.db --img_db /img/coco_test2015 \
        --output_dir $VQA_EXP --checkpoint 6000 --pin_mem --fp16
    
    The result file will be written at $VQA_EXP/results_test/results_6000_all.json, which can be submitted to the evaluation server

VCR

NOTE: train and inference should be ran inside the docker container

  1. download data
    bash scripts/download_vcr.sh $PATH_TO_STORAGE
    
  2. train
    horovodrun -np 4 python train_vcr.py --config config/train-vcr-base-4gpu.json \
        --output_dir $VCR_EXP
    
  3. inference
    horovodrun -np 4 python inf_vcr.py --txt_db /txt/vcr_test.db \
        --img_db "/img/vcr_gt_test/;/img/vcr_test/" \
        --split test --output_dir $VCR_EXP --checkpoint 8000 \
        --pin_mem --fp16
    
    The result file will be written at $VCR_EXP/results_test/results_8000_all.csv, which can be submitted to VCR leaderboard for evluation.

VCR 2nd Stage Pre-training

NOTE: pretrain should be ran inside the docker container

  1. download VCR data if you haven't
    bash scripts/download_vcr.sh $PATH_TO_STORAGE
    
  2. 2nd stage pre-train
    horovodrun -np 4 python pretrain_vcr.py --config config/pretrain-vcr-base-4gpu.json \
        --output_dir $PRETRAIN_VCR_EXP
    

Visual Entailment (SNLI-VE)

NOTE: train should be ran inside the docker container

  1. download data
    bash scripts/download_ve.sh $PATH_TO_STORAGE
    
  2. train
    horovodrun -np 2 python train_ve.py --config config/train-ve-base-2gpu.json \
        --output_dir $VE_EXP
    

Image-Text Retrieval

download data

bash scripts/download_itm.sh $PATH_TO_STORAGE

NOTE: Image-Text Retrieval is computationally heavy, especially on COCO.

Zero-shot Image-Text Retrieval (Flickr30k)

# every image-text pair has to be ranked; please use as many GPUs as possible
horovodrun -np $NGPU python inf_itm.py \
    --txt_db /txt/itm_flickr30k_test.db --img_db /img/flickr30k \
    --checkpoint /pretrain/uniter-base.pt --model_config /src/config/uniter-base.json \
    --output_dir $ZS_ITM_RESULT --fp16 --pin_mem

Image-Text Retrieval (Flickr30k)

  • normal finetune
    horovodrun -np 8 python train_itm.py --config config/train-itm-flickr-base-8gpu.json
    
  • finetune with hard negatives
    horovodrun -np 16 python train_itm_hard_negatives.py \
        --config config/train-itm-flickr-base-16gpu-hn.jgon
    

Image-Text Retrieval (COCO)

  • finetune with hard negatives
    horovodrun -np 16 python train_itm_hard_negatives.py \
        --config config/train-itm-coco-base-16gpu-hn.json
    

Referring Expressions

  1. download data
    bash scripts/download_re.sh $PATH_TO_STORAGE
    
  2. train
    python train_re.py --config config/train-refcoco-base-1gpu.json \
        --output_dir $RE_EXP
    
  3. inference and evaluation
    source scripts/eval_refcoco.sh $RE_EXP
    
    The result files will be written under $RE_EXP/results_test/

Similarly, change corresponding configs/scripts for running RefCOCO+/RefCOCOg.

Pre-tranining

download

bash scripts/download_indomain.sh $PATH_TO_STORAGE

pre-train

horovodrun -np 8 python pretrain.py --config config/pretrain-indomain-base-8gpu.json \
    --output_dir $PRETRAIN_EXP

Unfortunately, we cannot host CC/SBU features due to their large size. Users will need to process them on their own. We will provide a smaller sample for easier reference to the expected format soon.

Citation

If you find this code useful for your research, please consider citing:

@inproceedings{chen2020uniter,
  title={Uniter: Universal image-text representation learning},
  author={Chen, Yen-Chun and Li, Linjie and Yu, Licheng and Kholy, Ahmed El and Ahmed, Faisal and Gan, Zhe and Cheng, Yu and Liu, Jingjing},
  booktitle={ECCV},
  year={2020}
}

License

MIT

Owner
Yen-Chun Chen
Researcher @ Microsoft Cloud+AI. previously Machine Learning Scientist @ Stackline; M.S. student @ UNC Chapel Hill NLP group
Yen-Chun Chen
Princeton NLP's pre-training library based on fairseq with DeepSpeed kernel integration 🚃

This repository provides a library for efficient training of masked language models (MLM), built with fairseq. We fork fairseq to give researchers mor

Princeton Natural Language Processing 92 Dec 27, 2022
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib

Grammarly 227 Jan 02, 2023
Codes to pre-train Japanese T5 models

t5-japanese Codes to pre-train a T5 (Text-to-Text Transfer Transformer) model pre-trained on Japanese web texts. The model is available at https://hug

Megagon Labs 37 Dec 25, 2022
Multi-Scale Temporal Frequency Convolutional Network With Axial Attention for Speech Enhancement

MTFAA-Net Unofficial PyTorch implementation of Baidu's MTFAA-Net: "Multi-Scale Temporal Frequency Convolutional Network With Axial Attention for Speec

Shimin Zhang 87 Dec 19, 2022
We have built a Voice based Personal Assistant for people to access files hands free in their device using natural language processing.

Voice Based Personal Assistant We have built a Voice based Personal Assistant for people to access files hands free in their device using natural lang

Rushabh 2 Nov 13, 2021
Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022
Open source code for AlphaFold.

AlphaFold This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP

DeepMind 9.7k Jan 02, 2023
The (extremely) naive sentiment classification function based on NBSVM trained on wisesight_sentiment

thai_sentiment The naive sentiment classification function based on NBSVM trained on wisesight_sentiment วิธีติดตั้ง pip install thai_sentiment==0.1.3

Charin 7 Dec 08, 2022
A Flask Sentiment Analysis API, with visual implementation

The Sentiment Analysis Api was created using python flask module,it allows users to parse a text or sentence throught the (?text) arguement, then view the sentiment analysis of that sentence. It can

Ifechukwudeni Oweh 10 Jul 17, 2022
Legal text retrieval for python

legal-text-retrieval Overview This system contains 2 steps: generate training data containing negative sample found by mixture score of cosine(tfidf)

Nguyễn Minh Phương 22 Dec 06, 2022
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022
Contact Extraction with Question Answering.

contactsQA Extraction of contact entities from address blocks and imprints with Extractive Question Answering. Goal Input: Dr. Max Mustermann Hauptstr

Jan 2 Apr 20, 2022
DAGAN - Dual Attention GANs for Semantic Image Synthesis

Contents Semantic Image Synthesis with DAGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evalu

Hao Tang 104 Oct 08, 2022
Japanese synonym library

chikkarpy chikkarpyはchikkarのPython版です。 chikkarpy is a Python version of chikkar. chikkarpy は Sudachi 同義語辞書を利用し、SudachiPyの出力に同義語展開を追加するために開発されたライブラリです。

Works Applications 48 Dec 14, 2022
BeautyNet is an AI powered model which can tell you whether you're beautiful or not.

BeautyNet BeautyNet is an AI powered model which can tell you whether you're beautiful or not. Download Dataset from here:https://www.kaggle.com/gpios

Ansh Gupta 0 May 06, 2022
✨Fast Coreference Resolution in spaCy with Neural Networks

✨ NeuralCoref 4.0: Coreference Resolution in spaCy with Neural Networks. NeuralCoref is a pipeline extension for spaCy 2.1+ which annotates and resolv

Hugging Face 2.6k Jan 04, 2023
Easy-to-use CPM for Chinese text generation

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

382 Jan 07, 2023
Explore different way to mix speech model(wav2vec2, hubert) and nlp model(BART,T5,GPT) together

SpeechMix Explore different way to mix speech model(wav2vec2, hubert) and nlp model(BART,T5,GPT) together. Introduction For the same input: from datas

Eric Lam 31 Nov 07, 2022
Visual Automata is a Python 3 library built as a wrapper for Caleb Evans' Automata library to add more visualization features.

Visual Automata Copyright 2021 Lewi Lie Uberg Released under the MIT license Visual Automata is a Python 3 library built as a wrapper for Caleb Evans'

Lewi Uberg 55 Nov 17, 2022
华为商城抢购手机的Python脚本 Python script of Huawei Store snapping up mobile phones

HUAWEI STORE GO 2021 说明 基于Python3+Selenium的华为商城抢购爬虫脚本,修改自近两年没更新的项目BUY-HW,为女神抢Nova 8(什么时候华为开始学小米玩饥饿营销了?) 原项目的登陆以及抢购部分已经不可用,本项目对原项目进行了改正以适应新华为商城,并增加一些功能

ZhangLiang 111 Dec 22, 2022