ICLR21 Tent: Fully Test-Time Adaptation by Entropy Minimization

Related tags

Deep Learningtent
Overview

⛺️ Tent: Fully Test-Time Adaptation by Entropy Minimization

This is the official project repository for Tent: Fully-Test Time Adaptation by Entropy Minimization by Dequan Wang*, Evan Shelhamer*, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell (ICLR 2021, spotlight).

⛺️ Tent equips a model to adapt itself to new and different data during testing ☀️ 🌧 ❄️ . Tented models adapt online and batch-by-batch to reduce error on dataset shifts like corruptions, simulation-to-real discrepancies, and other differences between training and testing data. This kind of adaptation is effective and efficient: tent makes just one update per batch to not interrupt inference.

We provide example code in PyTorch to illustrate the tent method and fully test-time adaptation setting.

Please check back soon for reference code to exactly reproduce the ImageNet-C results in the paper.

Installation:

pip install -r requirements.txt

tent depends on

and the example depends on

  • RobustBench v0.1 for the dataset and pre-trained model
  • yacs for experiment configuration

but feel free to try your own data and model too!

Usage:

import tent

model = TODO_model()

model = tent.configure_model(model)
params, param_names = tent.collect_params(model)
optimizer = TODO_optimizer(params, lr=1e-3)
tented_model = tent.Tent(model, optimizer)

outputs = tented_model(inputs)  # now it infers and adapts!

Example: Adapting to Image Corruptions on CIFAR-10-C

The example adapts a CIFAR-10 classifier to image corruptions on CIFAR-10-C. The purpose of the example is explanation, not reproduction: exact details of the model architecture, optimization settings, etc. may differ from the paper. That said, the results should be representative, so do give it a try and experiment!

This example compares a baseline without adaptation (source), test-time normalization for updating feature statistics during testing (norm), and our method for entropy minimization during testing (tent). The dataset is CIFAR-10-C, with 15 types and 5 levels of corruption. The model is WRN-28-10, which is the default model for RobustBench.

Usage:

python cifar10c.py --cfg cfgs/source.yaml
python cifar10c.py --cfg cfgs/norm.yaml
python cifar10c.py --cfg cfgs/tent.yaml

Result: tent reduces the error (%) across corruption types at the most severe level of corruption (level 5).

mean gauss_noise shot_noise impulse_noise defocus_blur glass_blur motion_blur zoom_blur snow frost fog brightness contrast elastic_trans pixelate jpeg
source code config 43.5 72.3 65.7 72.9 46.9 54.3 34.8 42.0 25.1 41.3 26.0 9.3 46.7 26.6 58.5 30.3
norm code config 20.4 28.1 26.1 36.3 12.8 35.3 14.2 12.1 17.3 17.4 15.3 8.4 12.6 23.8 19.7 27.3
tent code config 18.6 24.8 23.5 33.0 12.0 31.8 13.7 10.8 15.9 16.2 13.7 7.9 12.1 22.0 17.3 24.2

See the full results for this example in the wandb report.

Correspondence

Please contact Dequan Wang and Evan Shelhamer at dqwang AT cs.berkeley.edu and shelhamer AT google.com.

Citation

If the tent method or fully test-time adaptation setting are helpful in your research, please consider citing our paper:

@inproceedings{wang2021tent,
  title={Tent: Fully Test-Time Adaptation by Entropy Minimization},
  author={Wang, Dequan and Shelhamer, Evan and Liu, Shaoteng and Olshausen, Bruno and Darrell, Trevor},
  booktitle={International Conference on Learning Representations},
  year={2021},
  url={https://openreview.net/forum?id=uXl3bZLkr3c}
}
Owner
Dequan Wang
CS Ph.D. Student at UC Berkeley
Dequan Wang
Official Implement of CVPR 2021 paper “Cross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting”

RGBT Crowd Counting Lingbo Liu, Jiaqi Chen, Hefeng Wu, Guanbin Li, Chenglong Li, Liang Lin. "Cross-Modal Collaborative Representation Learning and a L

37 Dec 08, 2022
pytorch implementation of fast-neural-style

fast-neural-style 🌇 🚀 NOTICE: This codebase is no longer maintained, please use the codebase from pytorch examples repository available at pytorch/e

Abhishek Kadian 405 Dec 15, 2022
Easy genetic ancestry predictions in Python

ezancestry Easily visualize your direct-to-consumer genetics next to 2500+ samples from the 1000 genomes project. Evaluate the performance of a custom

Kevin Arvai 38 Jan 02, 2023
A Real-World Benchmark for Reinforcement Learning based Recommender System

RL4RS: A Real-World Benchmark for Reinforcement Learning based Recommender System RL4RS is a real-world deep reinforcement learning recommender system

121 Dec 01, 2022
Regulatory Instruments for Fair Personalized Pricing.

Fair pricing Source code for WWW 2022 paper Regulatory Instruments for Fair Personalized Pricing. Installation Requirements Linux with Python = 3.6 p

Renzhe Xu 6 Oct 26, 2022
Python calculations for the position of the sun and moon.

Astral This is 'astral' a Python module which calculates Times for various positions of the sun: dawn, sunrise, solar noon, sunset, dusk, solar elevat

Simon Kennedy 169 Dec 20, 2022
SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation

SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation SeqFormer SeqFormer: a Frustratingly Simple Model for Video Instance Segmentat

Junfeng Wu 298 Dec 22, 2022
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
This is implementation of AlexNet(2012) with 3D Convolution on TensorFlow (AlexNet 3D).

AlexNet_3dConv TensorFlow implementation of AlexNet(2012) by Alex Krizhevsky, with 3D convolutiional layers. 3D AlexNet Network with a standart AlexNe

Denis Timonin 41 Jan 16, 2022
BABEL: Bodies, Action and Behavior with English Labels [CVPR 2021]

BABEL is a large dataset with language labels describing the actions being performed in mocap sequences. BABEL labels about 43 hours of mocap sequences from AMASS [1] with action labels.

113 Dec 28, 2022
An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.

NNI Doc | 简体中文 NNI (Neural Network Intelligence) is a lightweight but powerful toolkit to help users automate Feature Engineering, Neural Architecture

Microsoft 12.4k Dec 31, 2022
code for Grapadora research paper experimentation

Road feature embedding selection method Code for research paper experimentation Abstract Traffic forecasting models rely on data that needs to be sens

Eric López Manibardo 0 May 26, 2022
なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモ

FaceDetection-Anti-Spoof-Demo なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモです。 モデルはPINTO_model_zoo/191_anti-spoof-mn3からONNX形式のモデルを使用しています。 Requirement mediapipe

KazuhitoTakahashi 8 Nov 18, 2022
One line to host them all. Bootstrap your image search case in minutes.

One line to host them all. Bootstrap your image search case in minutes. Survey NOW gives the world access to customized neural image search in just on

Jina AI 403 Dec 30, 2022
Differentiable Abundance Matching With Python

shamnet Differentiable Stellar Population Synthesis Installation You can install shamnet with pip. Installation dependencies are numpy, jax, corrfunc,

5 Dec 17, 2021
This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.

PyTorch Infer Utils This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model infer

Alex Gorodnitskiy 11 Mar 20, 2022
Project dự đoán giá cổ phiếu bằng thuật toán LSTM gồm: code train và code demo

Web predicts stock prices using Long - Short Term Memory algorithm Give me some start please!!! User interface image: Choose: DayBegin, DayEnd, Stock

Vo Thuong Truong Nhon 8 Nov 11, 2022
Caffe-like explicit model constructor. C(onfig)Model

cmodel Caffe-like explicit model constructor. C(onfig)Model Installation pip install git+https://github.com/bonlime/cmodel Usage In order to allow usi

1 Feb 18, 2022
"Structure-Augmented Text Representation Learning for Efficient Knowledge Graph Completion"(WWW 2021)

STAR_KGC This repo contains the source code of the paper accepted by WWW'2021. "Structure-Augmented Text Representation Learning for Efficient Knowled

Bo Wang 60 Dec 26, 2022
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022