Diverse Branch Block: Building a Convolution as an Inception-like Unit

Overview

Diverse Branch Block: Building a Convolution as an Inception-like Unit (PyTorch) (CVPR-2021)

DBB is a powerful ConvNet building block to replace regular conv. It improves the performance without any extra inference-time costs. This repo contains the code for building DBB and converting it into a single conv. You can also get the equivalent kernel and bias in a differentiable way at any time (get_equivalent_kernel_bias in diversebranchblock.py). This may help training-based pruning or quantization.

This is the PyTorch implementation. The MegEngine version is at https://github.com/megvii-model/DiverseBranchBlock

Paper: https://arxiv.org/abs/2103.13425

Update: released the code for building the block, transformations and verification.

Update: a more efficient implementation of BNAndPadLayer

Sometimes I call it ACNet v2 because 'DBB' is two bits larger than 'ACB' in ASCII. (lol)

We provide the trained models and a super simple PyTorch-official-example-style training script to reproduce the results.

Abstract

We propose a universal building block of Convolutional Neural Network (ConvNet) to improve the performance without any inference-time costs. The block is named Diverse Branch Block (DBB), which enhances the representational capacity of a single convolution by combining diverse branches of different scales and complexities to enrich the feature space, including sequences of convolutions, multi-scale convolutions, and average pooling. After training, a DBB can be equivalently converted into a single conv layer for deployment. Unlike the advancements of novel ConvNet architectures, DBB complicates the training-time microstructure while maintaining the macro architecture, so that it can be used as a drop-in replacement for regular conv layers of any architecture. In this way, the model can be trained to reach a higher level of performance and then transformed into the original inference-time structure for inference. DBB improves ConvNets on image classification (up to 1.9% higher top-1 accuracy on ImageNet), object detection and semantic segmentation.

image image image

Use our pretrained models

You may download the models reported in the paper from Google Drive (https://drive.google.com/drive/folders/1BPuqY_ktKz8LvHjFK5abD0qy3ESp8v6H?usp=sharing) or Baidu Cloud (https://pan.baidu.com/s/1wPaQnLKyNjF_bEMNRo4z6Q, the access code is "dbbk"). Currently only ResNet-18 models are available. The others will be released very soon. For the ease of transfer learning on other tasks, we provide both training-time and inference-time models. For ResNet-18 as an example, assume IMGNET_PATH is the path to your directory that contains the "train" and "val" directories of ImageNet, you may test the accuracy by running

python test.py IMGNET_PATH train ResNet-18_DBB_7101.pth -a ResNet-18 -t DBB

Here "train" indicates the training-time structure

Convert the training-time models into inference-time

You may convert a trained model into the inference-time structure with

python convert.py [weights file of the training-time model to load] [path to save] -a [architecture name]

For example,

python convert.py ResNet-18_DBB_7101.pth ResNet-18_DBB_7101_deploy.pth -a ResNet-18

Then you may test the inference-time model by

python test.py IMGNET_PATH deploy ResNet-18_DBB_7101_deploy.pth -a ResNet-18 -t DBB

Note that the argument "deploy" builds an inference-time model.

ImageNet training

The multi-processing training script in this repo is based on the official PyTorch example for the simplicity and better readability. The modifications include the model-building part and cosine learning rate scheduler. You may train and test like this:

python train.py -a ResNet-18 -t DBB --dist-url tcp://127.0.0.1:23333 --dist-backend nccl --multiprocessing-distributed --world-size 1 --rank 0 --workers 64 IMGNET_PATH
python test.py IMGNET_PATH train model_best.pth.tar -a ResNet-18

Use like this in your own code

Assume your model is like

class SomeModel(nn.Module):
    def __init__(self, ...):
        ...
        self.some_conv = nn.Conv2d(...)
        self.some_bn = nn.BatchNorm2d(...)
        ...
        
    def forward(self, inputs):
        out = ...
        out = self.some_bn(self.some_conv(out))
        ...

For training, just use DiverseBranchBlock to replace the conv-BN. Then SomeModel will be like

class SomeModel(nn.Module):
    def __init__(self, ...):
        ...
        self.some_dbb = DiverseBranchBlock(..., deploy=False)
        ...
        
    def forward(self, inputs):
        out = ...
        out = self.some_dbb(out)
        ...

Train the model just like you train the other regular models. Then call switch_to_deploy of every DiverseBranchBlock, test, and save.

model = SomeModel(...)
train(model)
for m in train_model.modules():
    if hasattr(m, 'switch_to_deploy'):
        m.switch_to_deploy()
test(model)
save(model)

FAQs

Q: Is the inference-time model's output the same as the training-time model?

A: Yes. You can verify that by

python dbb_verify.py

Q: What is the relationship between DBB and RepVGG?

A: RepVGG is a plain architecture, and the RepVGG-style structural re-param is designed for the plain architecture. On a non-plain architecture, a RepVGG block shows no superiority compared to a single 3x3 conv (it improves Res-50 by only 0.03%, as reported in the RepVGG paper). DBB is a universal building block that can be used on numerous architectures.

Q: How to quantize a model with DBB?

A1: Post-training quantization. After training and conversion, you may quantize the converted model with any post-training quantization method. Then you may insert a BN after the conv converted from a DBB and finetune to recover the accuracy just like you quantize and finetune the other models. This is the recommended solution.

A2: Quantization-aware training. During the quantization-aware training, instead of constraining the params in a single kernel (e.g., making every param in {-127, -126, .., 126, 127} for int8) for an ordinary conv, you should constrain the equivalent kernel of a DBB (get_equivalent_kernel_bias()).

Q: I tried to finetune your model with multiple GPUs but got an error. Why are the names of params like "xxxx.weight" in the downloaded weight file but sometimes like "module.xxxx.weight" (shown by nn.Module.named_parameters()) in my model?

A: DistributedDataParallel may prefix "module." to the name of params and cause a mismatch when loading weights by name. The simplest solution is to load the weights (model.load_state_dict(...)) before DistributedDataParallel(model). Otherwise, you may insert "module." before the names like this

checkpoint = torch.load(...)    # This is just a name-value dict
ckpt = {('module.' + k) : v for k, v in checkpoint.items()}
model.load_state_dict(ckpt)

Likewise, if the param names in the checkpoint file start with "module." but those in your model do not, you may strip the names like

ckpt = {k.replace('module.', ''):v for k,v in checkpoint.items()}   # strip the names
model.load_state_dict(ckpt)

Q: So a DBB derives the equivalent KxK kernels before each forwarding to save computations?

A: No! More precisely, we do the conversion only once right after training. Then the training-time model can be discarded, and every resultant block is just a KxK conv. We only save and use the resultant model.

Contact

[email protected]

Google Scholar Profile: https://scholar.google.com/citations?user=CIjw0KoAAAAJ&hl=en

My open-sourced papers and repos:

Simple and powerful VGG-style ConvNet architecture (preprint, 2021): RepVGG: Making VGG-style ConvNets Great Again (https://github.com/DingXiaoH/RepVGG)

State-of-the-art channel pruning (preprint, 2020): Lossless CNN Channel Pruning via Decoupling Remembering and Forgetting (https://github.com/DingXiaoH/ResRep)

CNN component (ICCV 2019): ACNet: Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks (https://github.com/DingXiaoH/ACNet)

Channel pruning (CVPR 2019): Centripetal SGD for Pruning Very Deep Convolutional Networks with Complicated Structure (https://github.com/DingXiaoH/Centripetal-SGD)

Channel pruning (ICML 2019): Approximated Oracle Filter Pruning for Destructive CNN Width Optimization (https://github.com/DingXiaoH/AOFP)

Unstructured pruning (NeurIPS 2019): Global Sparse Momentum SGD for Pruning Very Deep Neural Networks (https://github.com/DingXiaoH/GSM-SGD)

NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Xintao 593 Jan 03, 2023
Denoising Diffusion Implicit Models

Denoising Diffusion Implicit Models (DDIM) Jiaming Song, Chenlin Meng and Stefano Ermon, Stanford Implements sampling from an implicit model that is t

465 Jan 05, 2023
PyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, EfficientNetV2, NFNet, Vision Transformer, MixNet, MobileNet-V3/V2, RegNet, DPN, CSPNet, and more

PyTorch Image Models Sponsors What's New Introduction Models Features Results Getting Started (Documentation) Train, Validation, Inference Scripts Awe

Ross Wightman 22.9k Jan 09, 2023
Sdf sparse conv - Deep Learning on SDF for Classifying Brain Biomarkers

Deep Learning on SDF for Classifying Brain Biomarkers To reproduce the results f

1 Jan 25, 2022
免费获取http代理并生成proxifier配置文件

freeproxy 免费获取http代理并生成proxifier配置文件 公众号:台下言书 工具说明:https://mp.weixin.qq.com/s?__biz=MzIyNDkwNjQ5Ng==&mid=2247484425&idx=1&sn=56ccbe130822aa35038095317

说书人 32 Mar 25, 2022
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

AI Secure 57 Dec 15, 2022
Neural Nano-Optics for High-quality Thin Lens Imaging

Neural Nano-Optics for High-quality Thin Lens Imaging Project Page | Paper | Data Ethan Tseng, Shane Colburn, James Whitehead, Luocheng Huang, Seung-H

Ethan Tseng 39 Dec 05, 2022
A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualization

Website, Tutorials, and Docs    Uncertainty Toolbox A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualizatio

Uncertainty Toolbox 1.4k Dec 28, 2022
clustering moroccan stocks time series data using k-means with dtw (dynamic time warping)

Moroccan Stocks Clustering Context Hey! we don't always have to forecast time series am I right ? We use k-means to cluster about 70 moroccan stock pr

Ayman Lafaz 7 Oct 18, 2022
Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations

Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations Code repo for paper Trans-Encoder: Unsupervised sentence-pa

Amazon 101 Dec 29, 2022
Reimplementation of the paper `Human Attention Maps for Text Classification: Do Humans and Neural Networks Focus on the Same Words? (ACL2020)`

Human Attention for Text Classification Re-implementation of the paper Human Attention Maps for Text Classification: Do Humans and Neural Networks Foc

Shunsuke KITADA 15 Dec 13, 2021
This is a custom made virus code in python, using tkinter module.

skeleterrorBetaV0.1-Virus-code This is a custom made virus code in python, using tkinter module. This virus is not harmful to the computer, it only ma

AR 0 Nov 21, 2022
IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling

IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling This is my code, data and approach for the IEEE-CIS Technical Challen

3 Sep 18, 2022
Official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers

Visual Parser (ViP) This is the official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers. Key Feature

Shuyang Sun 117 Dec 11, 2022
Generative code template for PixelBeasts 10k NFT project.

generator-template Generative code template for combining transparent png attributes into 10,000 unique images. Used for the PixelBeasts 10k NFT proje

Yohei Nakajima 9 Aug 24, 2022
This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking

SimpleTrack This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking. We are still working on writing t

TuSimple 189 Dec 26, 2022
Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment

PENecro This project is based on "Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment", published on hardwear.io USA 202

Ta-Lun Yen 10 May 17, 2022
Pytorch implementation of Zero-DCE++

Zero-DCE++ You can find more details here: https://li-chongyi.github.io/Proj_Zero-DCE++.html. You can find the details of our CVPR version: https://li

Chongyi Li 157 Dec 23, 2022
TransGAN: Two Transformers Can Make One Strong GAN

[Preprint] "TransGAN: Two Transformers Can Make One Strong GAN", Yifan Jiang, Shiyu Chang, Zhangyang Wang

VITA 1.5k Jan 07, 2023
Learning Time-Critical Responses for Interactive Character Control

Learning Time-Critical Responses for Interactive Character Control Abstract This code implements the paper Learning Time-Critical Responses for Intera

Movement Research Lab 227 Dec 31, 2022