Diverse Branch Block: Building a Convolution as an Inception-like Unit

Overview

Diverse Branch Block: Building a Convolution as an Inception-like Unit (PyTorch) (CVPR-2021)

DBB is a powerful ConvNet building block to replace regular conv. It improves the performance without any extra inference-time costs. This repo contains the code for building DBB and converting it into a single conv. You can also get the equivalent kernel and bias in a differentiable way at any time (get_equivalent_kernel_bias in diversebranchblock.py). This may help training-based pruning or quantization.

This is the PyTorch implementation. The MegEngine version is at https://github.com/megvii-model/DiverseBranchBlock

Paper: https://arxiv.org/abs/2103.13425

Update: released the code for building the block, transformations and verification.

Update: a more efficient implementation of BNAndPadLayer

Sometimes I call it ACNet v2 because 'DBB' is two bits larger than 'ACB' in ASCII. (lol)

We provide the trained models and a super simple PyTorch-official-example-style training script to reproduce the results.

Abstract

We propose a universal building block of Convolutional Neural Network (ConvNet) to improve the performance without any inference-time costs. The block is named Diverse Branch Block (DBB), which enhances the representational capacity of a single convolution by combining diverse branches of different scales and complexities to enrich the feature space, including sequences of convolutions, multi-scale convolutions, and average pooling. After training, a DBB can be equivalently converted into a single conv layer for deployment. Unlike the advancements of novel ConvNet architectures, DBB complicates the training-time microstructure while maintaining the macro architecture, so that it can be used as a drop-in replacement for regular conv layers of any architecture. In this way, the model can be trained to reach a higher level of performance and then transformed into the original inference-time structure for inference. DBB improves ConvNets on image classification (up to 1.9% higher top-1 accuracy on ImageNet), object detection and semantic segmentation.

image image image

Use our pretrained models

You may download the models reported in the paper from Google Drive (https://drive.google.com/drive/folders/1BPuqY_ktKz8LvHjFK5abD0qy3ESp8v6H?usp=sharing) or Baidu Cloud (https://pan.baidu.com/s/1wPaQnLKyNjF_bEMNRo4z6Q, the access code is "dbbk"). Currently only ResNet-18 models are available. The others will be released very soon. For the ease of transfer learning on other tasks, we provide both training-time and inference-time models. For ResNet-18 as an example, assume IMGNET_PATH is the path to your directory that contains the "train" and "val" directories of ImageNet, you may test the accuracy by running

python test.py IMGNET_PATH train ResNet-18_DBB_7101.pth -a ResNet-18 -t DBB

Here "train" indicates the training-time structure

Convert the training-time models into inference-time

You may convert a trained model into the inference-time structure with

python convert.py [weights file of the training-time model to load] [path to save] -a [architecture name]

For example,

python convert.py ResNet-18_DBB_7101.pth ResNet-18_DBB_7101_deploy.pth -a ResNet-18

Then you may test the inference-time model by

python test.py IMGNET_PATH deploy ResNet-18_DBB_7101_deploy.pth -a ResNet-18 -t DBB

Note that the argument "deploy" builds an inference-time model.

ImageNet training

The multi-processing training script in this repo is based on the official PyTorch example for the simplicity and better readability. The modifications include the model-building part and cosine learning rate scheduler. You may train and test like this:

python train.py -a ResNet-18 -t DBB --dist-url tcp://127.0.0.1:23333 --dist-backend nccl --multiprocessing-distributed --world-size 1 --rank 0 --workers 64 IMGNET_PATH
python test.py IMGNET_PATH train model_best.pth.tar -a ResNet-18

Use like this in your own code

Assume your model is like

class SomeModel(nn.Module):
    def __init__(self, ...):
        ...
        self.some_conv = nn.Conv2d(...)
        self.some_bn = nn.BatchNorm2d(...)
        ...
        
    def forward(self, inputs):
        out = ...
        out = self.some_bn(self.some_conv(out))
        ...

For training, just use DiverseBranchBlock to replace the conv-BN. Then SomeModel will be like

class SomeModel(nn.Module):
    def __init__(self, ...):
        ...
        self.some_dbb = DiverseBranchBlock(..., deploy=False)
        ...
        
    def forward(self, inputs):
        out = ...
        out = self.some_dbb(out)
        ...

Train the model just like you train the other regular models. Then call switch_to_deploy of every DiverseBranchBlock, test, and save.

model = SomeModel(...)
train(model)
for m in train_model.modules():
    if hasattr(m, 'switch_to_deploy'):
        m.switch_to_deploy()
test(model)
save(model)

FAQs

Q: Is the inference-time model's output the same as the training-time model?

A: Yes. You can verify that by

python dbb_verify.py

Q: What is the relationship between DBB and RepVGG?

A: RepVGG is a plain architecture, and the RepVGG-style structural re-param is designed for the plain architecture. On a non-plain architecture, a RepVGG block shows no superiority compared to a single 3x3 conv (it improves Res-50 by only 0.03%, as reported in the RepVGG paper). DBB is a universal building block that can be used on numerous architectures.

Q: How to quantize a model with DBB?

A1: Post-training quantization. After training and conversion, you may quantize the converted model with any post-training quantization method. Then you may insert a BN after the conv converted from a DBB and finetune to recover the accuracy just like you quantize and finetune the other models. This is the recommended solution.

A2: Quantization-aware training. During the quantization-aware training, instead of constraining the params in a single kernel (e.g., making every param in {-127, -126, .., 126, 127} for int8) for an ordinary conv, you should constrain the equivalent kernel of a DBB (get_equivalent_kernel_bias()).

Q: I tried to finetune your model with multiple GPUs but got an error. Why are the names of params like "xxxx.weight" in the downloaded weight file but sometimes like "module.xxxx.weight" (shown by nn.Module.named_parameters()) in my model?

A: DistributedDataParallel may prefix "module." to the name of params and cause a mismatch when loading weights by name. The simplest solution is to load the weights (model.load_state_dict(...)) before DistributedDataParallel(model). Otherwise, you may insert "module." before the names like this

checkpoint = torch.load(...)    # This is just a name-value dict
ckpt = {('module.' + k) : v for k, v in checkpoint.items()}
model.load_state_dict(ckpt)

Likewise, if the param names in the checkpoint file start with "module." but those in your model do not, you may strip the names like

ckpt = {k.replace('module.', ''):v for k,v in checkpoint.items()}   # strip the names
model.load_state_dict(ckpt)

Q: So a DBB derives the equivalent KxK kernels before each forwarding to save computations?

A: No! More precisely, we do the conversion only once right after training. Then the training-time model can be discarded, and every resultant block is just a KxK conv. We only save and use the resultant model.

Contact

[email protected]

Google Scholar Profile: https://scholar.google.com/citations?user=CIjw0KoAAAAJ&hl=en

My open-sourced papers and repos:

Simple and powerful VGG-style ConvNet architecture (preprint, 2021): RepVGG: Making VGG-style ConvNets Great Again (https://github.com/DingXiaoH/RepVGG)

State-of-the-art channel pruning (preprint, 2020): Lossless CNN Channel Pruning via Decoupling Remembering and Forgetting (https://github.com/DingXiaoH/ResRep)

CNN component (ICCV 2019): ACNet: Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks (https://github.com/DingXiaoH/ACNet)

Channel pruning (CVPR 2019): Centripetal SGD for Pruning Very Deep Convolutional Networks with Complicated Structure (https://github.com/DingXiaoH/Centripetal-SGD)

Channel pruning (ICML 2019): Approximated Oracle Filter Pruning for Destructive CNN Width Optimization (https://github.com/DingXiaoH/AOFP)

Unstructured pruning (NeurIPS 2019): Global Sparse Momentum SGD for Pruning Very Deep Neural Networks (https://github.com/DingXiaoH/GSM-SGD)

Trajectory Prediction with Graph-based Dual-scale Context Fusion

DSP: Trajectory Prediction with Graph-based Dual-scale Context Fusion Introduction This is the project page of the paper Lu Zhang, Peiliang Li, Jing C

HKUST Aerial Robotics Group 103 Jan 04, 2023
UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems

[ICLR 2021] "UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems" by Jiayi Shen, Haotao Wang*, Shupeng Gui*, Jianchao Tan, Zhangyang Wang, and Ji Liu

VITA 39 Dec 03, 2022
The first dataset of composite images with rationality score indicating whether the object placement in a composite image is reasonable.

Object-Placement-Assessment-Dataset-OPA Object-Placement-Assessment (OPA) is to verify whether a composite image is plausible in terms of the object p

BCMI 53 Nov 15, 2022
AdamW optimizer for bfloat16 models in pytorch.

Image source AdamW optimizer for bfloat16 models in pytorch. Bfloat16 is currently an optimal tradeoff between range and relative error for deep netwo

Alex Rogozhnikov 8 Nov 20, 2022
Demo notebooks for Qiskit application modules demo sessions (Oct 8 & 15):

qiskit-application-modules-demo-sessions This repo hosts demo notebooks for the Qiskit application modules demo sessions hosted on Qiskit YouTube. Par

Qiskit Community 46 Nov 24, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.

ENet This work has been published in arXiv: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. Packages: train contains too

e-Lab 344 Nov 21, 2022
ArcaneGAN by Alex Spirin

ArcaneGAN by Alex Spirin

Alex 617 Dec 28, 2022
Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021)

Substrate_Mediated_Invasion Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021) 2DSolver.jl reproduces the simulat

Matthew Simpson 0 Nov 09, 2021
A simple Rock-Paper-Scissors game using CV in python

ML18_Rock-Paper-Scissors-using-CV A simple Rock-Paper-Scissors game using CV in python For IITISOC-21 Rules and procedure to play the interactive game

Anirudha Bhagwat 3 Aug 08, 2021
Pca-on-genotypes - Mini bioinformatics project - PCA on genotypes

Mini bioinformatics project: PCA on genotypes This repo contains the code from t

Maria Nattestad 8 Dec 04, 2022
Unofficial Pytorch Implementation of WaveGrad2

WaveGrad 2 — Unofficial PyTorch Implementation WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis Unofficial PyTorch+Lightning Implementati

MINDs Lab 104 Nov 29, 2022
Convolutional 2D Knowledge Graph Embeddings resources

ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes

Tim Dettmers 586 Dec 24, 2022
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022
🇰🇷 Text to Image in Korean

KoDALLE Utilizing pretrained language model’s token embedding layer and position embedding layer as DALLE’s text encoder. Background Training DALLE mo

HappyFace 74 Sep 22, 2022
The coda and data for "Measuring Fine-Grained Domain Relevance of Terms: A Hierarchical Core-Fringe Approach" (ACL '21)

We propose a hierarchical core-fringe learning framework to measure fine-grained domain relevance of terms – the degree that a term is relevant to a broad (e.g., computer science) or narrow (e.g., de

Jie Huang 14 Oct 21, 2022
Providing the solutions for high-frequency trading (HFT) strategies using data science approaches (Machine Learning) on Full Orderbook Tick Data.

Modeling High-Frequency Limit Order Book Dynamics Using Machine Learning Framework to capture the dynamics of high-frequency limit order books. Overvi

Chang-Shu Chung 1.3k Jan 07, 2023
Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Representation Robustness Evaluations Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all t

Sicheng 19 Dec 07, 2022
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022
(NeurIPS 2020) Wasserstein Distances for Stereo Disparity Estimation

Wasserstein Distances for Stereo Disparity Estimation Accepted in NeurIPS 2020 as Spotlight. [Project Page] Wasserstein Distances for Stereo Disparity

Divyansh Garg 92 Dec 12, 2022
[ICCV 2021] Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neural Networks in Frequency Domain

Amplitude-Phase Recombination (ICCV'21) Official PyTorch implementation of "Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neur

Guangyao Chen 53 Oct 05, 2022