Official implementation of "GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators" (NeurIPS 2020)

Related tags

Deep LearningGS-WGAN
Overview

GS-WGAN

LICENSE Python

This repository contains the implementation for GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators (NeurIPS 2020).

Contact: Dingfan Chen ([email protected])

Requirements

The environment can be set up using Anaconda with the following commands:

conda create --name gswgan-pytorch python=3.6
conda activate gswgan-pytorch
conda install pytorch=1.2.0 
conda install torchvision -c pytorch
pip install -r requirements.txt

Please note that modifications in registering the backward_hook (in source/main.py) may be required if you plan to use a different pytorch version. Please refer to the pytorch document (select pytorch version → torch.nnModule → search for register_backward_hook) for more information.

Training

Step 1. To warm-start the discriminators:

cd source
sh pretrain.sh
  • To run the training in parallel: adjust the 'meta_start' argument and run the script multiple times in parallel.
  • Alternatively, you can download the pre-trained models using the links below.

Step 2. To train the differentially private generator:

cd source
python main.py -data 'mnist' -name 'ResNet_default' -ldir '../results/mnist/pretrain/ResNet_default'
  • Please refer to source/config.py (or execute python main.py -h) for the complete list of arguments.

  • The default setting require ~22G GPU memory. Please allocate multiple GPUs by specifying the '-ngpus' argument if it does not fit in the memory of one GPU.

Evaluation

Privacy

  • To compute the privacy cost:
    cd evaluation
    python privacy_analysis.py -data 'mnist' -name 'ResNet_default'
    

Pre-trained Models

Pre-trained model checkpoints can be downloaded using the links below. The discriminators are obtained after the warm-starting step (step 1), while the generators are obtained after the DP training step (step 2). The pre-trained models are stored as .pth files and the corresponding training configurations are stored in params.pkl and params.txt.

Generator Discriminators
MNIST link link
Fashion-MNIST link link

Citation

@inproceedings{neurips20chen,
title = {GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators},
author = {Dingfan Chen and Tribhuvanesh Orekondy and Mario Fritz},
year = {2020},
date = {2020-12-06},
booktitle = {Neural Information Processing Systems (NeurIPS)},
pubstate = {published},
tppubtype = {inproceedings}
}

Acknowledgements

Our implementation uses the source code from the following repositories:

Stereo Hybrid Event-Frame (SHEF) Cameras for 3D Perception, IROS 2021

For academic use only. Stereo Hybrid Event-Frame (SHEF) Cameras for 3D Perception Ziwei Wang, Liyuan Pan, Yonhon Ng, Zheyu Zhuang and Robert Mahony Th

Ziwei Wang 11 Jan 04, 2023
BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation

BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation This is a demo implementation of BYOL for Audio (BYOL-A), a self-sup

NTT Communication Science Laboratories 160 Jan 04, 2023
Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization

Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization Code for reproducing our results in the Head2Toe paper. Paper: arxiv.or

Google Research 62 Dec 12, 2022
Combinatorial model of ligand-receptor binding

Combinatorial model of ligand-receptor binding The binding of ligands to receptors is the starting point for many import signal pathways within a cell

Mobolaji Williams 0 Jan 09, 2022
Faster RCNN with PyTorch

Faster RCNN with PyTorch Note: I re-implemented faster rcnn in this project when I started learning PyTorch. Then I use PyTorch in all of my projects.

Long Chen 1.6k Dec 23, 2022
Public implementation of "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression" from CoRL'21

Self-Supervised Reward Regression (SSRR) Codebase for CoRL 2021 paper "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression "

19 Dec 12, 2022
Learning Optical Flow from a Few Matches (CVPR 2021)

Learning Optical Flow from a Few Matches This repository contains the source code for our paper: Learning Optical Flow from a Few Matches CVPR 2021 Sh

Shihao Jiang (Zac) 159 Dec 16, 2022
This repository contains all data used for writing a research paper Multiple Object Trackers in OpenCV: A Benchmark, presented in ISIE 2021 conference in Kyoto, Japan.

OpenCV-Multiple-Object-Tracking Python is version 3.6.7 to install opencv: pip uninstall opecv-python pip uninstall opencv-contrib-python pip install

6 Dec 19, 2021
This repository contains the code for the paper Neural RGB-D Surface Reconstruction

Neural RGB-D Surface Reconstruction Paper | Project Page | Video Neural RGB-D Surface Reconstruction Dejan Azinović, Ricardo Martin-Brualla, Dan B Gol

Dejan 406 Jan 04, 2023
Code for our CVPR 2021 paper "MetaCam+DSCE"

Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification (CVPR'21) Introduction Code for our CVPR 2021

FlyingRoastDuck 59 Oct 31, 2022
This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML)

package tests docs license stats support This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML

National Center for Cognitive Research of ITMO University 482 Dec 26, 2022
Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance

Nested Graph Neural Networks About Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance.

Muhan Zhang 38 Jan 05, 2023
Official implementation of FCL-taco2: Fast, Controllable and Lightweight version of Tacotron2 @ ICASSP 2021

FCL-Taco2: Towards Fast, Controllable and Lightweight Text-to-Speech synthesis (ICASSP 2021) Paper | Demo Block diagram of FCL-taco2, where the decode

Disong Wang 39 Sep 28, 2022
Rax is a Learning-to-Rank library written in JAX

🦖 Rax: Composable Learning to Rank using JAX Rax is a Learning-to-Rank library written in JAX. Rax provides off-the-shelf implementations of ranking

Google 247 Dec 27, 2022
A simple consistency training framework for semi-supervised image semantic segmentation

PseudoSeg: Designing Pseudo Labels for Semantic Segmentation PseudoSeg is a simple consistency training framework for semi-supervised image semantic s

Google Interns 143 Dec 13, 2022
CvT-ASSD: Convolutional vision-Transformerbased Attentive Single Shot MultiBox Detector (ICTAI 2021 CCF-C 会议)The 33rd IEEE International Conference on Tools with Artificial Intelligence

CvT-ASSD including extra CvT, CvT-SSD, VGG-ASSD models original-code-website: https://github.com/albert-jin/CvT-SSD new-code-website: https://github.c

金伟强 -上海大学人工智能小渣渣~ 5 Mar 07, 2022
MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021)

MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021) A pytorch implementation of MicroNet. If you use this code in your research

Yunsheng Li 293 Dec 28, 2022
Official implementation of "Watermarking Images in Self-Supervised Latent-Spaces"

🔍 Watermarking Images in Self-Supervised Latent-Spaces PyTorch implementation and pretrained models for the paper. For details, see Watermarking Imag

Meta Research 32 Dec 13, 2022
Probabilistic Cross-Modal Embedding (PCME) CVPR 2021

Probabilistic Cross-Modal Embedding (PCME) CVPR 2021 Official Pytorch implementation of PCME | Paper Sanghyuk Chun1 Seong Joon Oh1 Rafael Sampaio de R

NAVER AI 87 Dec 21, 2022
Python Interview Questions

Python Interview Questions Clone the code to your computer. You need to understand the code in main.py and modify the content in if __name__ =='__main

ClassmateLin 575 Dec 28, 2022