Rax is a Learning-to-Rank library written in JAX

Related tags

Deep Learningrax
Overview

🦖 Rax: Composable Learning to Rank using JAX

Rax is a Learning-to-Rank library written in JAX. Rax provides off-the-shelf implementations of ranking losses and metrics to be used with JAX. It provides the following functionality:

  • Ranking losses (rax.*_loss): rax.softmax_loss, rax.pairwise_logistic_loss, ...
  • Ranking metrics (rax.*_metric): rax.mrr_metric, rax.ndcg_metric, ...
  • Transformations (rax.*_t12n): rax.approx_t12n, rax.gumbel_t12n, ...

Ranking

A ranking problem is different from traditional classification/regression problems in that its objective is to optimize for the correctness of the relative order of a list of examples (e.g., documents) for a given context (e.g., a query). Rax provides support for ranking problems within the JAX ecosystem. It can be used in, but is not limited to, the following applications:

  • Search: ranking a list of documents with respect to a query.
  • Recommendation: ranking a list of items given a user as context.
  • Question Answering: finding the best answer from a list of candidates.
  • Dialogue System: finding the best response from a list of responses.

Synopsis

In a nutshell, given the scores and labels for a list of items, Rax can compute various ranking losses and metrics:

import jax.numpy as jnp
import rax

scores = jnp.asarray([2.2, -1.3, 5.4])  # output of a model.
labels = jnp.asarray([1., 0., 0.])      # indicates doc 1 is relevant.

rax.ndcg_metric(scores, labels)         # computes a ranking metric.
rax.pairwise_hinge_loss(scores, labels) # computes a ranking loss.

All of the Rax losses and metrics are purely functional and compose well with standard JAX transformations. Additionally, Rax provides ranking-specific transformations so you can build new ranking losses. An example is rax.approx_t12n, which can be used to transform any (non-differentiable) ranking metric into a differentiable loss. For example:

loss_fn = rax.approx_t12n(rax.ndcg_metric)
loss_fn(scores, labels)            # differentiable approx ndcg loss.
jax.grad(loss_fn)(scores, labels)  # computes gradients w.r.t. scores.

Examples

See the examples/ directory for complete examples on how to use Rax.

You might also like...
[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.
[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning This is the Tensorflow implementation of ICLR 2021 paper Rank the Episo

Rank 1st in the public leaderboard of ScanRefer (2021-03-18)
Rank 1st in the public leaderboard of ScanRefer (2021-03-18)

InstanceRefer InstanceRefer: Cooperative Holistic Understanding for Visual Grounding on Point Clouds through Instance Multi-level Contextual Referring

Code for
Code for "LoRA: Low-Rank Adaptation of Large Language Models"

LoRA: Low-Rank Adaptation of Large Language Models This repo contains the implementation of LoRA in GPT-2 and steps to replicate the results in our re

Official PyTorch Implementation of Rank & Sort Loss [ICCV2021]
Official PyTorch Implementation of Rank & Sort Loss [ICCV2021]

Rank & Sort Loss for Object Detection and Instance Segmentation The official implementation of Rank & Sort Loss. Our implementation is based on mmdete

This is the pytorch implementation for the paper: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation, which is accepted to ICCV2021.

GMPQ: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation This is the pytorch implementation for the paper: Generalizable Mix

 COD-Rank-Localize-and-Segment (CVPR2021)
COD-Rank-Localize-and-Segment (CVPR2021)

COD-Rank-Localize-and-Segment (CVPR2021) Simultaneously Localize, Segment and Rank the Camouflaged Objects Full camouflage fixation training dataset i

Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train format

ttopt Description Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train (TT) format and maximu

ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure

ViViT is a collection of numerical tricks to efficiently access curvature from the generalized Gauss-Newton (GGN) matrix based on its low-rank structure. Provided functionality includes computing

This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing.

Feedback Prize - Evaluating Student Writing This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing. The

Comments
  • Add Kendall's tau

    Add Kendall's tau

    Kendall's tau (https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient) is a ranking metric which we could add to Rax. We can reference the SciPy version of Kendall's tau (https://github.com/scipy/scipy/blob/v1.9.0/scipy/stats/_stats_py.py#L5015-L5222) as inspiration or comparison for the Rax implementation.

    Expected usage:

    scores = jnp.array([0., 1., 2.])
    labels = jnp.array([1., 2., 0.])
    rax.kendalltau_metric(scores, labels)  # should produce Kendall's tau-b.
    
    enhancement 
    opened by rjagerman 0
Releases(v0.2.0)
Owner
Google
Google ❤️ Open Source
Google
Repo for CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning

CReST in Tensorflow 2 Code for the paper: "CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning" by Chen Wei, Ki

Google Research 75 Nov 01, 2022
Google-drive-to-sqlite - Create a SQLite database containing metadata from Google Drive

google-drive-to-sqlite Create a SQLite database containing metadata from Google

Simon Willison 140 Dec 04, 2022
Code of Adverse Weather Image Translation with Asymmetric and Uncertainty aware GAN

Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN (AU-GAN) Official Tensorflow implementation of Adverse Weather Image Trans

Jeong-gi Kwak 36 Dec 26, 2022
A Pytorch implementation of MoveNet from Google. Include training code and pre-train model.

Movenet.Pytorch Intro MoveNet is an ultra fast and accurate model that detects 17 keypoints of a body. This is A Pytorch implementation of MoveNet fro

Mr.Fire 241 Dec 26, 2022
IA for recognising Traffic Signs using Keras [Tensorflow]

Traffic Signs Recognition ⚠️ 🚦 Fundamentals of Intelligent Systems Introduction 📄 Development of a neural network capable of recognizing nine differ

Sebastián Fernández García 2 Dec 19, 2022
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022
Deep Surface Reconstruction from Point Clouds with Visibility Information

Data, code and pretrained models for the paper Deep Surface Reconstruction from Point Clouds with Visibility Information.

Raphael Sulzer 23 Jan 04, 2023
FOSS Digital Asset Distribution Platform built on Frappe.

Digistore FOSS Digital Assets Marketplace. Distribute digital assets, like a pro. Video Demo Here Features Create, attach and list digital assets (PDF

Mohammad Hussain Nagaria 30 Dec 08, 2022
Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom

Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom Sample on-line plotting while training(avg loss)/testing(writ

Jingwei Zhang 269 Nov 15, 2022
SPRING is a seq2seq model for Text-to-AMR and AMR-to-Text (AAAI2021).

SPRING This is the repo for SPRING (Symmetric ParsIng aNd Generation), a novel approach to semantic parsing and generation, presented at AAAI 2021. Wi

Sapienza NLP group 98 Dec 21, 2022
A Python module for the generation and training of an entry-level feedforward neural network.

ff-neural-network A Python module for the generation and training of an entry-level feedforward neural network. This repository serves as a repurposin

Riadh 2 Jan 31, 2022
🔮 A refreshing functional take on deep learning, compatible with your favorite libraries

Thinc: A refreshing functional take on deep learning, compatible with your favorite libraries From the makers of spaCy, Prodigy and FastAPI Thinc is a

Explosion 2.6k Dec 30, 2022
Quantization library for PyTorch. Support low-precision and mixed-precision quantization, with hardware implementation through TVM.

HAWQ: Hessian AWare Quantization HAWQ is an advanced quantization library written for PyTorch. HAWQ enables low-precision and mixed-precision uniform

Zhen Dong 293 Dec 30, 2022
AFL binary instrumentation

E9AFL --- Binary AFL E9AFL inserts American Fuzzy Lop (AFL) instrumentation into x86_64 Linux binaries. This allows binaries to be fuzzed without the

242 Dec 12, 2022
Learning To Have An Ear For Face Super-Resolution

Learning To Have An Ear For Face Super-Resolution [Project Page] This repository contains demo code of our CVPR2020 paper. Training and evaluation on

50 Nov 16, 2022
Vision transformers (ViTs) have found only limited practical use in processing images

CXV Convolutional Xformers for Vision Vision transformers (ViTs) have found only limited practical use in processing images, in spite of their state-o

Cloudwalker 23 Sep 10, 2022
A python library for highly configurable transformers - easing model architecture search and experimentation.

A python library for highly configurable transformers - easing model architecture search and experimentation.

Anthony Fuller 51 Nov 20, 2022
A curated list of the latest breakthroughs in AI (in 2021) by release date with a clear video explanation, link to a more in-depth article, and code.

2021: A Year Full of Amazing AI papers- A Review 📌 A curated list of the latest breakthroughs in AI by release date with a clear video explanation, l

Louis-François Bouchard 2.9k Dec 31, 2022
This is Official implementation for "Pose-guided Feature Disentangling for Occluded Person Re-Identification Based on Transformer" in AAAI2022

PFD:Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer This repo is the official implementation of "Pose-gui

Tao Wang 93 Dec 18, 2022
NeurIPS 2021, self-supervised 6D pose on category level

SE(3)-eSCOPE video | paper | website Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation Xiaolong Li, Yijia Weng,

Xiaolong 63 Nov 22, 2022