Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom

Overview

Neural Turing Machine (NTM) &

Differentiable Neural Computer (DNC) with

pytorch & visdom


  • Sample on-line plotting while training(avg loss)/testing(write/read weights & memory) NTM on the copy task (top 2 rows, 1st row converges to sequentially write to lower locations, 2nd row converges to sequentially write to upper locations) and DNC on the repeat-copy task (3rd row) (the write/read weights here are after location focus so are no longer necessarily normalized within each head by design):

  • Sample loggings while training DNC on the repeat-copy task (we use WARNING as the logging level currently to get rid of the INFO printouts from visdom):
[WARNING ] (MainProcess) <===================================>
[WARNING ] (MainProcess) bash$: python -m visdom.server
[WARNING ] (MainProcess) http://localhost:8097/env/daim_17051000
[WARNING ] (MainProcess) <===================================> Agent:
[WARNING ] (MainProcess) <-----------------------------======> Env:
[WARNING ] (MainProcess) Creating {repeat-copy | } w/ Seed: 123
[WARNING ] (MainProcess) Word     {length}:   {4}
[WARNING ] (MainProcess) Words #  {min, max}: {1, 2}
[WARNING ] (MainProcess) Repeats  {min, max}: {1, 2}
[WARNING ] (MainProcess) <-----------------------------======> Circuit:    {Controller, Accessor}
[WARNING ] (MainProcess) <--------------------------------===> Controller:
[WARNING ] (MainProcess) LSTMController (
  (in_2_hid): LSTMCell(70, 64, bias=1)
)
[WARNING ] (MainProcess) <--------------------------------===> Accessor:   {WriteHead, ReadHead, Memory}
[WARNING ] (MainProcess) <-----------------------------------> WriteHeads: {1 heads}
[WARNING ] (MainProcess) DynamicWriteHead (
  (hid_2_key): Linear (64 -> 16)
  (hid_2_beta): Linear (64 -> 1)
  (hid_2_alloc_gate): Linear (64 -> 1)
  (hid_2_write_gate): Linear (64 -> 1)
  (hid_2_erase): Linear (64 -> 16)
  (hid_2_add): Linear (64 -> 16)
)
[WARNING ] (MainProcess) <-----------------------------------> ReadHeads:  {4 heads}
[WARNING ] (MainProcess) DynamicReadHead (
  (hid_2_key): Linear (64 -> 64)
  (hid_2_beta): Linear (64 -> 4)
  (hid_2_free_gate): Linear (64 -> 4)
  (hid_2_read_mode): Linear (64 -> 12)
)
[WARNING ] (MainProcess) <-----------------------------------> Memory:     {16(batch_size) x 16(mem_hei) x 16(mem_wid)}
[WARNING ] (MainProcess) <-----------------------------======> Circuit:    {Overall Architecture}
[WARNING ] (MainProcess) DNCCircuit (
  (controller): LSTMController (
    (in_2_hid): LSTMCell(70, 64, bias=1)
  )
  (accessor): DynamicAccessor (
    (write_heads): DynamicWriteHead (
      (hid_2_key): Linear (64 -> 16)
      (hid_2_beta): Linear (64 -> 1)
      (hid_2_alloc_gate): Linear (64 -> 1)
      (hid_2_write_gate): Linear (64 -> 1)
      (hid_2_erase): Linear (64 -> 16)
      (hid_2_add): Linear (64 -> 16)
    )
    (read_heads): DynamicReadHead (
      (hid_2_key): Linear (64 -> 64)
      (hid_2_beta): Linear (64 -> 4)
      (hid_2_free_gate): Linear (64 -> 4)
      (hid_2_read_mode): Linear (64 -> 12)
    )
  )
  (hid_to_out): Linear (128 -> 5)
)
[WARNING ] (MainProcess) No Pretrained Model. Will Train From Scratch.
[WARNING ] (MainProcess) <===================================> Training ...
[WARNING ] (MainProcess) Reporting       @ Step: 500 | Elapsed Time: 30.609361887
[WARNING ] (MainProcess) Training Stats:   avg_loss:         0.014866309287
[WARNING ] (MainProcess) Evaluating      @ Step: 500
[WARNING ] (MainProcess) Evaluation        Took: 1.6457400322
[WARNING ] (MainProcess) Iteration: 500; loss_avg: 0.0140423600748
[WARNING ] (MainProcess) Saving Model    @ Step: 500: /home/zhang/ws/17_ws/pytorch-dnc/models/daim_17051000.pth ...
[WARNING ] (MainProcess) Saved  Model    @ Step: 500: /home/zhang/ws/17_ws/pytorch-dnc/models/daim_17051000.pth.
[WARNING ] (MainProcess) Resume Training @ Step: 500
...

What is included?

This repo currently contains the following algorithms:

  • Neural Turing Machines (NTM) [1]
  • Differentiable Neural Computers (DNC) [2]

Tasks:

  • copy
  • repeat-copy

Code structure & Naming conventions

NOTE: we follow the exact code structure as pytorch-rl so as to make the code easily transplantable.

  • ./utils/factory.py

We suggest the users refer to ./utils/factory.py, where we list all the integrated Env, Circuit, Agent into Dict's. All of the core classes are implemented in ./core/. The factory pattern in ./utils/factory.py makes the code super clean, as no matter what type of Circuit you want to train, or which type of Env you want to train on, all you need to do is to simply modify some parameters in ./utils/options.py, then the ./main.py will do it all (NOTE: this ./main.py file never needs to be modified).

  • namings

To make the code more clean and readable, we name the variables using the following pattern:

  • *_vb: torch.autograd.Variable's or a list of such objects
  • *_ts: torch.Tensor's or a list of such objects
  • otherwise: normal python datatypes

Dependencies


How to run:

You only need to modify some parameters in ./utils/options.py to train a new configuration.

  • Configure your training in ./utils/options.py:
  • line 12: add an entry into CONFIGS to define your training (agent_type, env_type, game, circuit_type)
  • line 28: choose the entry you just added
  • line 24-25: fill in your machine/cluster ID (MACHINE) and timestamp (TIMESTAMP) to define your training signature (MACHINE_TIMESTAMP), the corresponding model file and the log file of this training will be saved under this signature (./models/MACHINE_TIMESTAMP.pth & ./logs/MACHINE_TIMESTAMP.log respectively). Also the visdom visualization will be displayed under this signature (first activate the visdom server by type in bash: python -m visdom.server &, then open this address in your browser: http://localhost:8097/env/MACHINE_TIMESTAMP)
  • line 28: to train a model, set mode=1 (training visualization will be under http://localhost:8097/env/MACHINE_TIMESTAMP); to test the model of this current training, all you need to do is to set mode=2 (testing visualization will be under http://localhost:8097/env/MACHINE_TIMESTAMP_test).
  • Run:

python main.py


Implementation Notes:

The difference between NTM & DNC is stated as follows in the DNC[2] paper:

Comparison with the neural Turing machine. The neural Turing machine (NTM) was the predecessor to the DNC described in this work. It used a similar architecture of neural network controller with read–write access to a memory matrix, but differed in the access mechanism used to interface with the memory. In the NTM, content-based addressing was combined with location-based addressing to allow the network to iterate through memory locations in order of their indices (for example, location n followed by n+1 and so on). This allowed the network to store and retrieve temporal sequences in contiguous blocks of memory. However, there were several drawbacks. First, the NTM has no mechanism to ensure that blocks of allocated memory do not overlap and interfere—a basic problem of computer memory management. Interference is not an issue for the dynamic memory allocation used by DNCs, which provides single free locations at a time, irrespective of index, and therefore does not require contiguous blocks. Second, the NTM has no way of freeing locations that have already been written to and, hence, no way of reusing memory when processing long sequences. This problem is addressed in DNCs by the free gates used for de-allocation. Third, sequential information is preserved only as long as the NTM continues to iterate through consecutive locations; as soon as the write head jumps to a different part of the memory (using content-based addressing) the order of writes before and after the jump cannot be recovered by the read head. The temporal link matrix used by DNCs does not suffer from this problem because it tracks the order in which writes were made.

We thus make some effort to put those two together in a combined codebase. The classes implemented have the following hierarchy:

  • Agent
    • Env
    • Circuit
      • Controller
      • Accessor
        • WriteHead
        • ReadHead
        • Memory

The part where NTM & DNC differs is the Accessor, where in the code NTM uses the StaticAccessor(may not be an appropriate name but we use this to make the code more consistent) and DNC uses the DynamicAccessor. Both Accessor classes use _content_focus() and _location_focus()(may not be an appropriate name for DNC but we use this to make the code more consistent). The _content_focus() is the same for both classes, but the _location_focus() for DNC is much more complicated as it uses dynamic allocation additionally for write and temporal link additionally for read. Those focus (or attention) mechanisms are implemented in Head classes, and those focuses output a weight vector for each head (write/read). Those weight vectors are then used in _access() to interact with the external memory.

A side note:

The sturcture for Env might look strange as this class was originally designed for reinforcement learning settings as in pytorch-rl; here we use it for providing datasets for supervised learning, so the reward, action and terminal are always left blank in this repo.


Repos we referred to during the development of this repo:


The following paper might be interesting to take a look:)

Neural SLAM: We present an approach for agents to learn representations of a global map from sensor data, to aid their exploration in new environments. To achieve this, we embed procedures mimicking that of traditional Simultaneous Localization and Mapping (SLAM) into the soft attention based addressing of external memory architectures, in which the external memory acts as an internal representation of the environment. This structure encourages the evolution of SLAM-like behaviors inside a completely differentiable deep neural network. We show that this approach can help reinforcement learning agents to successfully explore new environments where long-term memory is essential. We validate our approach in both challenging grid-world environments and preliminary Gazebo experiments. A video of our experiments can be found at: \url{https://goo.gl/RfiSxo}.

@article{zhang2017neural,
  title={Neural SLAM},
  author={Zhang, Jingwei and Tai, Lei and Boedecker, Joschka and Burgard, Wolfram and Liu, Ming},
  journal={arXiv preprint arXiv:1706.09520},
  year={2017}
}


Citation

If you find this library useful and would like to cite it, the following would be appropriate:

@misc{pytorch-dnc,
  author = {Zhang, Jingwei},
  title = {jingweiz/pytorch-dnc},
  url = {https://github.com/jingweiz/pytorch-dnc},
  year = {2017}
}
Owner
Jingwei Zhang
Jingwei Zhang
This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting

1 MAGNN This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting. 1.1 The frame

SZJ 12 Nov 08, 2022
A machine learning project which can detect and predict the skin disease through image recognition.

ML-Project-2021 A machine learning project which can detect and predict the skin disease through image recognition. The dataset used for this is the H

Debshishu Ghosh 1 Jan 13, 2022
[ICLR 2022 Oral] F8Net: Fixed-Point 8-bit Only Multiplication for Network Quantization

F8Net Fixed-Point 8-bit Only Multiplication for Network Quantization (ICLR 2022 Oral) OpenReview | arXiv | PDF | Model Zoo | BibTex PyTorch implementa

Snap Research 76 Dec 13, 2022
Understanding Hyperdimensional Computing for Parallel Single-Pass Learning

Understanding Hyperdimensional Computing for Parallel Single-Pass Learning Authors: Tao Yu* Yichi Zhang* Zhiru Zhang Christopher De Sa *: Equal Contri

Cornell RelaxML 4 Sep 08, 2022
PyTorch implementation of PP-LCNet: A Lightweight CPU Convolutional Neural Network

PyTorch implementation of PP-LCNet Reproduction of PP-LCNet architecture as described in PP-LCNet: A Lightweight CPU Convolutional Neural Network by C

Quan Nguyen (Fly) 47 Nov 02, 2022
Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Learned Virtual View Visibility ICCV2021

Vis2Mesh This is the offical repository of the paper: Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Lear

71 Dec 25, 2022
Repository for "Exploring Sparsity in Image Super-Resolution for Efficient Inference", CVPR 2021

SMSR Reposity for "Exploring Sparsity in Image Super-Resolution for Efficient Inference" [arXiv] Highlights Locate and skip redundant computation in S

Longguang Wang 225 Dec 26, 2022
Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV)

BayesOpt-LV Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV) About This repository contains the s

1 Nov 11, 2021
Learning from graph data using Keras

Steps to run = Download the cora dataset from this link : https://linqs.soe.ucsc.edu/data unzip the files in the folder input/cora cd code python eda

Mansar Youness 64 Nov 16, 2022
Code for the paper Hybrid Spectrogram and Waveform Source Separation

Demucs Music Source Separation This is the 3rd release of Demucs (v3), featuring hybrid source separation. For the waveform only Demucs (v2): Go this

Meta Research 4.8k Jan 04, 2023
Code for PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing

PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing CVPR 2021. Project page: https://kai-46.github.io/

Kai Zhang 141 Dec 14, 2022
BookMyShowPC - Movie Ticket Reservation App made with Tkinter

Book My Show PC What is this? Movie Ticket Reservation App made with Tkinter. Tk

The Nithin Balaji 3 Dec 09, 2022
iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis

iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis Andreas Bl

CompVis Heidelberg 36 Dec 25, 2022
Source-to-Source Debuggable Derivatives in Pure Python

Tangent Tangent is a new, free, and open-source Python library for automatic differentiation. Existing libraries implement automatic differentiation b

Google 2.2k Jan 01, 2023
Continuous Augmented Positional Embeddings (CAPE) implementation for PyTorch

PyTorch implementation of Continuous Augmented Positional Embeddings (CAPE), by Likhomanenko et al. Enhance your Transformer positional embeddings with easy-to-use augmentations!

Guillermo Cámbara 26 Dec 13, 2022
TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently.

Adversarial Chess TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently. Requirements To run

Muthu Chidambaram 30 Sep 07, 2021
EMNLP 2021 paper The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers.

Codebase for training transformers on systematic generalization datasets. The official repository for our EMNLP 2021 paper The Devil is in the Detail:

Csordás Róbert 57 Nov 21, 2022
Code corresponding to The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents

The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents This is the code corresponding to The Introspective

0 Jan 10, 2022
Python with OpenCV - MediaPip Framework Hand Detection

Python HandDetection Python with OpenCV - MediaPip Framework Hand Detection Explore the docs » Contact Me About The Project It is a Computer vision pa

2 Jan 07, 2022
Understanding the Effects of Datasets Characteristics on Offline Reinforcement Learning

Understanding the Effects of Datasets Characteristics on Offline Reinforcement Learning Kajetan Schweighofer1, Markus Hofmarcher1, Marius-Constantin D

Institute for Machine Learning, Johannes Kepler University Linz 17 Dec 28, 2022