Huawei Hackathon 2021 - Sweden (Stockholm)

Overview

huawei-hackathon-2021

Contributors

banner

Challenge

Requirements:

  • python=3.8.10
  • Standard libraries (no importing)

Important factors:

Data dependency between tasks for a Directed Acyclic Graph (DAG).

Task waits until parent tasks finished and data generated by parent reaches current task.

Communication time: The time which takes to send the parents’ data to their children, if they are located on different processing nodes; otherwise it can be assumed negligible. As a result, we prefer to assign communicating tasks on the same processing node.

Assign tasks on the same processing node where possible; if not, make data transfers from parent -> children as fast as possible.

Affinity: It refers to the affinity of a task to its previous instances running on the same processing node that can reduce overhead to initialize the task, such as a lower Instruction Cache Miss. Ideally the task is better to run on the same processing node where its previous instance was recently run.

Reuse processing nodes where possible. I.e. run children tasks on parent node.

Load Balancing of processing nodes: The CPU utilization of processing nodes should be balanced and uniformed.

Self explanitory.

Assumptions

  1. If communicating tasks assigned to the same processing node, the communication time between them is negligible, i.e., equal to 0.

    Using same node reduces communication time to 0.

  2. If the previous instance of the same task is recently assigned to the same processing node, the estimated execution time of the current instance of the task reduces by 10%. For example, if T0 is assigned to PN1, the execution time of the second instance of T0 (denoted by T0’) on PN1 is 9µs, rather than 10µs.

    Using same node reduces processing time by 10%. PN1 = Processing Node 1. T0 = Task 0.

  3. "Recently assigned" can be translated to:
    • If the previous instance of the current task is among the last Χ tasks run on the PN.
    • For this purpose we need to keep, a history of the X recent tasks which run on each PN.

      Log the tasks tracked?

  4. A DAG’s deadline is relative to its release time which denoted by di . For example, if the deadline of a DAG is 3 and the release time of its ith instance is 12, it should be completed before 15.
  5. All time units are in microseconds.
  6. The execution of tasks are non-preemptive, in the sense that a task that starts executing on a processor will not be interrupted by other tasks until its execution is completed.

    Tasks cannot run concurrently on the same processor.

Problem Formulation

Consider a real-time app including n DAGs (DAG1, DAG2, ... DAGn) each of which are periodically released with a period Pk . Instances of each DAG is released over the course of the running application. The ith instance of the kth DAG is denoted by Dk(i). The application is run on x homogenous processing nodes (PN1, PN2, ... PNx). The algorithm should find a solution on how to assign the tasks of DAGs to the PNs so that all DAGs deadlines are respected and the makespan of the given application is minimized. Makespan: The time where all instances of DAGs are completed

Questions:

Propose an algorithm to solve the considered problem to maximize the utility function including both the total application Makespan and the standard deviation of the PN utilizations (i.e., how well-uniform is the assignment) such that both task dependency constraints and DAGs deadlines are met.

Utility Function = 1 / (10 * Normalized(Makespan) + STD(PN utilizations))
Normalized(Makespan) = Makespan / Application_worst_case_completion_time
Application_worst_case_completion_time = SUM(execution_times, DAG_communication_times)
Normalized(Makespan) and STD(PN utilizations) are both values [0..1] Algorithm should specify the assignment of tasks to PNs that maximize utility function. Algorithm should specify the order the tasks are scheduled and execution order of tasks for each PN.

I/O

Input

Scheduler input: 12 test cases consisting of a JSON file that includes:

  • A set of independent DAGs
  • The deadlines for the DAGs
  • Number of instances of each DAG
  • Period (Pk) of the DAGs
  • List of tasks for each DAG
  • Execution times for each DAG
  • Communication (inter-task) times for each DAG __ --> Number of cores mentioned in each test case <--__

Output

A CSV file including:

  • The PN_id of which each task was assigned to (0, 1, ... x)
  • Order of execution of the tasks in their assigned PN
  • Start and finish time of the task
  • Applcation markspan
  • The STD of the clusters' utilization (PN utilization?)
  • Value of the utility function
  • The execution time of the scheduler on our machine.

image

Note for Python coders: If you code in Python, you need to write your own printer function to create the csv files in the specified format.

Owner
Drake Axelrod
Student at University of Göteborg studying Software Engineering & Management.
Drake Axelrod
Fuzzy Overclustering (FOC)

Fuzzy Overclustering (FOC) In real-world datasets, we need consistent annotations between annotators to give a certain ground-truth label. However, in

2 Nov 08, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
[ICML 2021] “ Self-Damaging Contrastive Learning”, Ziyu Jiang, Tianlong Chen, Bobak Mortazavi, Zhangyang Wang

Self-Damaging Contrastive Learning Introduction The recent breakthrough achieved by contrastive learning accelerates the pace for deploying unsupervis

VITA 51 Dec 29, 2022
Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification.

Easy Few-Shot Learning Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification. This repository is made for you

Sicara 399 Jan 08, 2023
Codecov coverage standard for Python

Python-Standard Last Updated: 01/07/22 00:09:25 What is this? This is a Python application, with basic unit tests, for which coverage is uploaded to C

Codecov 10 Nov 04, 2022
This is a clean and robust Pytorch implementation of DQN and Double DQN.

DQN/DDQN-Pytorch This is a clean and robust Pytorch implementation of DQN and Double DQN. Here is the training curve: All the experiments are trained

XinJingHao 15 Dec 27, 2022
RaceBERT -- A transformer based model to predict race and ethnicty from names

RaceBERT -- A transformer based model to predict race and ethnicty from names Installation pip install racebert Using a virtual environment is highly

Prasanna Parasurama 3 Nov 02, 2022
OpenMMLab Computer Vision Foundation

English | 简体中文 Introduction MMCV is a foundational library for computer vision research and supports many research projects as below: MMCV: OpenMMLab

OpenMMLab 4.6k Jan 09, 2023
A simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

This is a simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

crispengari 3 Jan 08, 2022
YKKDetector For Python

YKKDetector OpenCVを利用した機械学習データをもとに、VRChatのスクリーンショットなどからYKKさん(もとい「幽狐族のお姉様」)を検出できるソフトウェアです。 マニュアル こちらから実行環境のセットアップから解説する詳細なマニュアルをご覧いただけます。 ライセンス 本ソフトウェア

あんふぃとらいと 5 Dec 07, 2021
The pyrelational package offers a flexible workflow to enable active learning with as little change to the models and datasets as possible

pyrelational is a python active learning library developed by Relation Therapeutics for rapidly implementing active learning pipelines from data management, model development (and Bayesian approximat

Relation Therapeutics 95 Dec 27, 2022
FlingBot: The Unreasonable Effectiveness of Dynamic Manipulations for Cloth Unfolding

This repository contains code for training and evaluating FlingBot in both simulation and real-world settings on a dual-UR5 robot arm setup for Ubuntu 18.04

Columbia Artificial Intelligence and Robotics Lab 70 Dec 06, 2022
An experiment to bait a generalized frontrunning MEV bot

Honeypot 🍯 A simple experiment that: Creates a honeypot contract Baits a generalized fronturnning bot with a unique transaction Analyze bot behaviour

0x1355 14 Nov 24, 2022
CS50's Introduction to Artificial Intelligence Test Scripts

CS50's Introduction to Artificial Intelligence Test Scripts 🤷‍♂️ What's this? 🤷‍♀️ This repository contains Python scripts to automate tests for mos

Jet Kan 2 Dec 28, 2022
PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch.

snn-localization repo PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch. Install Dependencies Orig

Sami BARCHID 1 Jan 06, 2022
tinykernel - A minimal Python kernel so you can run Python in your Python

tinykernel - A minimal Python kernel so you can run Python in your Python

fast.ai 37 Dec 02, 2022
Code for our paper "Interactive Analysis of CNN Robustness"

Perturber Code for our paper "Interactive Analysis of CNN Robustness" Datasets Feature visualizations: Google Drive Fine-tuning checkpoints as saved m

Stefan Sietzen 0 Aug 17, 2021
NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring

NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring Uncensored version of the following image can be found at https://i.

notAI.tech 1.1k Dec 29, 2022
PyTorch implementation of adversarial patch

adversarial-patch PyTorch implementation of adversarial patch This is an implementation of the Adversarial Patch paper. Not official and likely to hav

Jamie Hayes 172 Nov 29, 2022