This is an official implementation for "PlaneRecNet".

Overview

PlaneRecNet

This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wise planes and monocular depth estimation, and focus on the cross-task consistency between two branches. Network Architecture

Changing Logs

22th. Oct. 2021: Initial update, some trained models and data annotation will be uploaded very soon.

29th. Oct. 2021: Upload ResNet-50 based model.

3rd. Nov. 2021: Nice to know that "prn" or "PRN" is a forbiden name in Windows.

4th. Nov. 2021: For inference, input image will be resized to max(H, W) == cfg.max_size, and reserve the aspect ratio. Update enviroment.yml, so that newest GPU can run it as well.

Installation

Install environment:

  • Clone this repository and enter it:
git clone https://github.com/EryiXie/PlaneRecNet.git
cd PlaneRecNet
  • Set up the environment using one of the following methods:
    • Using Anaconda
      • Run conda env create -f environment.yml
    • Using Docker
      • dockerfile will come later...

Download trained model:

Here are our models (released on Oct 22th, 2021), which can reproduce the results in the paper:

Quantitative Results

All models below are trained with batch_size=8 and a single RTX3090 or a single RTXA6000 on the plane annotation for ScanNet dataset:

Image Size Backbone FPS Weights
480x640 Resnet50-DCN 19.1 PlaneRecNet_50
480x640 Resnet101-DCN 14.4 PlaneRecNet_101

Simple Inference

Inference with an single image(*.jpg or *.png format):

python3 simple_inference.py --config=PlaneRecNet_101_config --trained_model=weights/PlaneRecNet_101_9_125000.pth  --image=data/example_nyu.jpg

Inference with images in a folder:

python3 simple_inference.py --config=PlaneRecNet_101_config --trained_model=weights/PlaneRecNet_101_9_125000.pth --images=input_folder:output_folder

Inference with .mat files from iBims-1 Dataset:

python3 simple_inference.py --config=PlaneRecNet_101_config --trained_model=weights/PlaneRecNet_101_9_125000.pth --ibims1=input_folder:output_folder

Then you will get segmentation and depth estimation results like these:

Qualititative Results

Training

PlaneRecNet is trained on ScanNet with 100k samples on one single RTX 3090 with batch_size=8, it takes approximate 37 hours. Here are the data annotations(about 1.0 GB) for training of ScanNet datasets, which is based on the annotation given by PlaneRCNN and converted into json file. Please not that, our training sample is not same as PlaneRCNN, because we don't have their training split at hand.

Please notice, the pathing and naming rules in our data/dataset.py, is not compatable with the raw data extracted with the ScanNetv2 original code. Please refer to this issue for fixing tips, thanks uyoung-jeong for that. I will add the data preprocessing script to fix this, once I have time.

Of course, please download ScanNet too for rgb image, depth image and camera intrinsic etc.. The annotation file we provide only contains paths for images and camera intrinsic and the ground truth of piece-wise plane instance and its plane parameters.

  • To train, grab an imagenet-pretrained model and put it in ./weights.
    • For Resnet101, download resnet101_reducedfc.pth from here.
    • For Resnet50, download resnet50-19c8e357.pth from here.
  • Run one of the training commands below.
    • Press ctrl+c while training and it will save an *_interrupt.pth file at the current iteration.
    • All weights are saved in the ./weights directory by default with the file name <config>_<epoch>_<iter>.pth.

Trains PlaneRecNet_101_config with a batch_size of 8.

python3 train.py --config=PlaneRecNet_101_config --batch_size=8

Trains PlaneRecNet, without writing any logs to tensorboard.

python3 train.py --config=PlaneRecNet_101_config --batch_size=8 --no_tensorboard

Run Tensorboard on local dir "./logs" to check the visualization. So far we provide loss recording and image sample visualization, may consider to add more (22.Oct.2021).

tenosrborad --logdir /log/folder/

Resume training PlaneRecNet with a specific weight file and start from the iteration specified in the weight file's name.

python3 train.py --config=PlaneRecNet_101_config --resume=weights/PlaneRecNet_101_X_XXXXX.pth

Use the help option to see a description of all available command line arguments.

python3 train.py --help

Multi-GPU Support

We adapted the Multi-GPU support from YOLACT, as well as the introduction of how to use it as follow:

  • Put CUDA_VISIBLE_DEVICES=[gpus] on the beginning of the training command.
    • Where you should replace [gpus] with a comma separated list of the index of each GPU you want to use (e.g., 0,1,2,3).
    • You should still do this if only using 1 GPU.
    • You can check the indices of your GPUs with nvidia-smi.
  • Then, simply set the batch size to 8*num_gpus with the training commands above. The training script will automatically scale the hyperparameters to the right values.
    • If you have memory to spare you can increase the batch size further, but keep it a multiple of the number of GPUs you're using.
    • If you want to allocate the images per GPU specific for different GPUs, you can use --batch_alloc=[alloc] where [alloc] is a comma seprated list containing the number of images on each GPU. This must sum to batch_size.

Known Issues

  1. Userwarning of torch.max_pool2d. This has no real affect. It appears when using PyTorch 1.9. And it is claimed "fixed" for the nightly version of PyTorch.
UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at  /pytorch/c10/core/TensorImpl.h:1156.)
  return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)
  1. Userwarning of leaking Caffe2 while training. This issues related to dataloader in PyTorch1.9, to avoid showing this warning, set pin_memory=False for dataloader. But you don't necessarily need to do this.
[W pthreadpool-cpp.cc:90] Warning: Leaking Caffe2 thread-pool after fork. (function pthreadpool)

Citation

If you use PlaneRecNet or this code base in your work, please cite

@misc{xie2021planerecnet,
      title={PlaneRecNet: Multi-Task Learning with Cross-Task Consistency for Piece-Wise Plane Detection and Reconstruction from a Single RGB Image}, 
      author={Yaxu Xie and Fangwen Shu and Jason Rambach and Alain Pagani and Didier Stricker},
      year={2021},
      eprint={2110.11219},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Contact

For questions about our paper or code, please contact Yaxu Xie, or take a good use at the Issues section of this repository.

Owner
yaxu
Oh, hamburgers!
yaxu
Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Muhammad Maaz 206 Jan 04, 2023
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
Official implementation of the NeurIPS 2021 paper Online Learning Of Neural Computations From Sparse Temporal Feedback

Online Learning Of Neural Computations From Sparse Temporal Feedback This repository is the official implementation of the NeurIPS 2021 paper Online L

Lukas Braun 3 Dec 15, 2021
Python implementation of ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images, AAAI2022.

ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images Binh M. Le & Simon S. Woo, "ADD:

2 Oct 24, 2022
Hso-groupie - A pwnable challenge in Real World CTF 4th

Hso-groupie - A pwnable challenge in Real World CTF 4th

Riatre Foo 42 Dec 05, 2022
Lightweight Python library for adding real-time object tracking to any detector.

Norfair is a customizable lightweight Python library for real-time 2D object tracking. Using Norfair, you can add tracking capabilities to any detecto

Tryolabs 1.7k Jan 05, 2023
In this project, we create and implement a deep learning library from scratch.

ARA In this project, we create and implement a deep learning library from scratch. Table of Contents Deep Leaning Library Table of Contents About The

22 Aug 23, 2022
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
RepVGG: Making VGG-style ConvNets Great Again

RepVGG: Making VGG-style ConvNets Great Again (PyTorch) This is a super simple ConvNet architecture that achieves over 80% top-1 accuracy on ImageNet

2.8k Jan 04, 2023
[SIGGRAPH 2022 Journal Track] AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars

AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars Fangzhou Hong1*  Mingyuan Zhang1*  Liang Pan1  Zhongang Cai1,2,3  Lei Yang2 

Fangzhou Hong 749 Jan 04, 2023
[CVPR 2021] Unsupervised 3D Shape Completion through GAN Inversion

ShapeInversion Paper Junzhe Zhang, Xinyi Chen, Zhongang Cai, Liang Pan, Haiyu Zhao, Shuai Yi, Chai Kiat Yeo, Bo Dai, Chen Change Loy "Unsupervised 3D

100 Dec 22, 2022
[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.

MiVOS (CVPR 2021) - Mask Propagation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] [Papers with Code] This repo impleme

Rex Cheng 106 Jan 03, 2023
The project is an official implementation of our CVPR2019 paper "Deep High-Resolution Representation Learning for Human Pose Estimation"

Deep High-Resolution Representation Learning for Human Pose Estimation (CVPR 2019) News [2020/07/05] A very nice blog from Towards Data Science introd

Leo Xiao 3.9k Jan 05, 2023
Implementation of Invariant Point Attention, used for coordinate refinement in the structure module of Alphafold2, as a standalone Pytorch module

Invariant Point Attention - Pytorch Implementation of Invariant Point Attention as a standalone module, which was used in the structure module of Alph

Phil Wang 113 Jan 05, 2023
ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information

ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information This repository contains code, model, dataset for ChineseBERT at ACL2021. Ch

413 Dec 01, 2022
One-line your code easily but still with the fun of doing so!

One-liner-iser One-line your code easily but still with the fun of doing so! Have YOU ever wanted to write one-line Python code, but don't have the sa

5 May 04, 2022
RoIAlign & crop_and_resize for PyTorch

RoIAlign for PyTorch This is a PyTorch version of RoIAlign. This implementation is based on crop_and_resize and supports both forward and backward on

Long Chen 530 Jan 07, 2023
BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

Holy Wu 35 Jan 01, 2023
iBOT: Image BERT Pre-Training with Online Tokenizer

Image BERT Pre-Training with iBOT Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.

Bytedance Inc. 435 Jan 06, 2023
Fantasy Points Prediction and Dream Team Formation

Fantasy-Points-Prediction-and-Dream-Team-Formation Collected Data from open source resources that have over 100 Parameters for predicting cricket play

Akarsh Singh 2 Sep 13, 2022