NL-Augmenter 🦎 → 🐍 A Collaborative Repository of Natural Language Transformations

Overview

Checks Forks Issues Pull requests Contributors License

NL-Augmenter 🦎 🐍

The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformations augment text datasets in diverse ways, including: randomizing names and numbers, changing style/syntax, paraphrasing, KB-based paraphrasing ... and whatever creative augmentation you contribute. We invite submissions of transformations to this framework by way of GitHub pull request, through August 31, 2021. All submitters of accepted transformations (and filters) will be included as co-authors on a paper announcing this framework.

The framework organizers can be contacted at [email protected].

Submission timeline

Due date Description
A̶u̶g̶u̶s̶t̶ 3̶1̶, 2̶0̶2̶1̶ P̶u̶l̶l̶ r̶e̶q̶u̶e̶s̶t̶ m̶u̶s̶t̶ b̶e̶ o̶p̶e̶n̶e̶d̶ t̶o̶ b̶e̶ e̶l̶i̶g̶i̶b̶l̶e̶ f̶o̶r̶ i̶n̶c̶l̶u̶s̶i̶o̶n̶ i̶n̶ t̶h̶e̶ f̶r̶a̶m̶e̶w̶o̶r̶k̶ a̶n̶d̶ a̶s̶s̶o̶c̶i̶a̶t̶e̶d̶ p̶a̶p̶e̶r̶
September 2̶2̶, 30 2021 Review process for pull request above must be complete

A transformation can be revised between the pull request submission and pull request merge deadlines. We will provide reviewer feedback to help with the revisions.

The transformations which are already accepted to NL-Augmenter are summarized in the transformations folder. Transformations undergoing review can be seen as pull requests.

Table of contents

Colab notebook

Open In Colab To quickly see transformations and filters in action, run through our colab notebook.

Some Ideas for Transformations

If you need inspiration for what transformations to implement, check out https://github.com/GEM-benchmark/NL-Augmenter/issues/75, where some ideas and previous papers are discussed. So far, contributions have focused on morphological inflections, character level changes, and random noise. The best new pull requests will be dissimilar from these existing contributions.

Installation

Requirements

  • Python 3.7

Instructions

# When creating a new transformation, replace this with your forked repository (see below)
git clone https://github.com/GEM-benchmark/NL-Augmenter.git
cd NL-Augmenter
python setup.py sdist
pip install -e .
pip install https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.0.0/en_core_web_sm-3.0.0.tar.gz

How do I create a transformation?

Setup

First, fork the repository in GitHub! 🍴

fork button

Your fork will have its own location, which we will call PATH_TO_YOUR_FORK. Next, clone the forked repository and create a branch for your transformation, which here we will call my_awesome_transformation:

git clone $PATH_TO_YOUR_FORK
cd NL-Augmenter
git checkout -b my_awesome_transformation

We will base our transformation on an existing example. Create a new transformation directory by copying over an existing transformation. You can choose to copy from other transformation directories depending on the task you wish to create a transformation for. Check some of the existing pull requests and merged transformations first to avoid duplicating efforts or creating transformations too similar to previous ones.

cd transformations/
cp -r butter_fingers_perturbation my_awesome_transformation
cd my_awesome_transformation

Creating a transformation

  1. In the file transformation.py, rename the class ButterFingersPerturbation to MyAwesomeTransformation and choose one of the interfaces from the interfaces/ folder. See the full list of options here.
  2. Now put all your creativity in implementing the generate method. If you intend to use external libraries, add them with their version numbers in requirements.txt
  3. Update my_awesome_transformation/README.md to describe your transformation.

Testing and evaluating (Optional)

Once you are done, add at least 5 example pairs as test cases in the file test.json so that no one breaks your code inadvertently.

Once the transformation is ready, test it:

pytest -s --t=my_awesome_transformation

If you would like to evaluate your transformation against a common 🤗 HuggingFace model, we encourage you to check evaluation

Code Styling To standardized the code we use the black code formatter which will run at the time of pre-commit. To use the pre-commit hook, install pre-commit with pip install pre-commit (should already be installed if you followed the above instructions). Then run pre-commit install to install the hook. On future commits, you should see the black code formatter is run on all python files you've staged for commit.

Submitting

Once the tests pass and you are happy with the transformation, submit them for review. First, commit and push your changes:

git add transformations/my_awesome_transformation/*
git commit -m "Added my_awesome_transformation"
git push --set-upstream origin my_awesome_transformation

Finally, submit a pull request. The last git push command prints a URL that can be copied into a browser to initiate such a pull request. Alternatively, you can do so from the GitHub website.

pull request button

Congratulations, you've submitted a transformation to NL-Augmenter!

How do I create a filter?

We also accept pull-requests for creating filters which identify interesting subpopulations of a dataset. The process to add a new filter is just the same as above. All filter implementations require implementing .filter instead of .generate and need to be placed in the filters folder. So, just the way transformations can transform examples of text, filters can identify whether an example follows some pattern of text! The only difference is that while transformations return another example of the same input format, filters simply return True or False! For step-by-step instructions, follow these steps.

BIG-Bench 🪑

If you are interested in NL-Augmenter, you may also be interested in the BIG-bench large scale collaborative benchmark for language models.

Most Creative Implementations 🏆

After all pull-requests have been merged, 3 of the most creative implementations would be selected and featured on this README page and on the NL-Augmenter webpage.

License

Some transformations include components released under a different (permissive, open source) license. For license details, refer to the README.md and any license files in the transformations's or filter's directory.

GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation. (CVPR 2021)

GDR-Net This repo provides the PyTorch implementation of the work: Gu Wang, Fabian Manhardt, Federico Tombari, Xiangyang Ji. GDR-Net: Geometry-Guided

169 Jan 07, 2023
Prototypical Cross-Attention Networks for Multiple Object Tracking and Segmentation, NeurIPS 2021 Spotlight

PCAN for Multiple Object Tracking and Segmentation This is the offical implementation of paper PCAN for MOTS. We also present a trailer that consists

ETH VIS Group 328 Dec 29, 2022
Deep Two-View Structure-from-Motion Revisited

Deep Two-View Structure-from-Motion Revisited This repository provides the code for our CVPR 2021 paper Deep Two-View Structure-from-Motion Revisited.

Jianyuan Wang 145 Jan 06, 2023
MNIST, but with Bezier curves instead of pixels

bezier-mnist This is a work-in-progress vector version of the MNIST dataset. Samples Here are some samples from the training set. Note that, while the

Alex Nichol 15 Jan 16, 2022
Does Pretraining for Summarization Reuqire Knowledge Transfer?

Pretraining summarization models using a corpus of nonsense

Approximately Correct Machine Intelligence (ACMI) Lab 12 Dec 19, 2022
MPI Interest Group on Algorithms on 1st semester 2021

MPI Algorithms Interest Group Introduction Lecturer: Steve Yan Location: TBA Time Schedule: TBA Semester: 1 Useful URLs Typora: https://typora.io Goog

Ex10si0n 13 Sep 08, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022
LightningFSL: Pytorch-Lightning implementations of Few-Shot Learning models.

LightningFSL: Few-Shot Learning with Pytorch-Lightning In this repo, a number of pytorch-lightning implementations of FSL algorithms are provided, inc

Xu Luo 76 Dec 11, 2022
Element selection for functional materials discovery by integrated machine learning of atomic contributions to properties

Element selection for functional materials discovery by integrated machine learning of atomic contributions to properties 8.11.2021 Andrij Vasylenko I

Leverhulme Research Centre for Functional Materials Design 4 Dec 20, 2022
Running Google MoveNet Multipose Tracking models on OpenVINO.

MoveNet MultiPose Tracking on OpenVINO

60 Nov 17, 2022
[2021][ICCV][FSNet] Full-Duplex Strategy for Video Object Segmentation

Full-Duplex Strategy for Video Object Segmentation (ICCV, 2021) Authors: Ge-Peng Ji, Keren Fu, Zhe Wu, Deng-Ping Fan*, Jianbing Shen, & Ling Shao This

Daniel-Ji 55 Dec 22, 2022
Codes for our paper "SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge" (EMNLP 2020)

SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge Introduction SentiLARE is a sentiment-aware pre-trained language

74 Dec 30, 2022
Explainability of the Implications of Supervised and Unsupervised Face Image Quality Estimations Through Activation Map Variation Analyses in Face Recognition Models

Explainable_FIQA_WITH_AMVA Note This is the official repository of the paper: Explainability of the Implications of Supervised and Unsupervised Face I

3 May 08, 2022
Trying to understand alias-free-gan.

alias-free-gan-explanation Trying to understand alias-free-gan in my own way. [Chinese Version 中文版本] CC-BY-4.0 License. Tzu-Heng Lin motivation of thi

Tzu-Heng Lin 12 Mar 17, 2022
OntoProtein: Protein Pretraining With Ontology Embedding

OntoProtein This is the implement of the paper "OntoProtein: Protein Pretraining With Ontology Embedding". OntoProtein is an effective method that mak

ZJUNLP 80 Dec 14, 2022
Implementation of Nyström Self-attention, from the paper Nyströmformer

Nyström Attention Implementation of Nyström Self-attention, from the paper Nyströmformer. Yannic Kilcher video Install $ pip install nystrom-attention

Phil Wang 95 Jan 02, 2023
Stochastic Extragradient: General Analysis and Improved Rates

Stochastic Extragradient: General Analysis and Improved Rates This repository is the official implementation of the paper "Stochastic Extragradient: G

Hugo Berard 4 Nov 11, 2022
"SOLQ: Segmenting Objects by Learning Queries", SOLQ is an end-to-end instance segmentation framework with Transformer.

SOLQ: Segmenting Objects by Learning Queries This repository is an official implementation of the paper SOLQ: Segmenting Objects by Learning Queries.

MEGVII Research 179 Jan 02, 2023
Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).

Self-supervised Graph-level Representation Learning with Local and Global Structure Introduction This project is an implementation of ``Self-supervise

MilaGraph 50 Dec 09, 2022