Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Overview

Bayesian-Torch: Bayesian neural network layers for uncertainty estimation

Get started | Example usage | Documentation | License | Citing

Bayesian layers and utilities to perform stochastic variational inference in PyTorch

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayesian-Torch is designed to be flexible and seamless in extending a deterministic deep neural network architecture to corresponding Bayesian form by simply replacing the deterministic layers with Bayesian layers.

The repository has implementations for the following Bayesian layers:

  • Variational layers with Gaussian mixture model (GMM) posteriors using reparameterized Monte Carlo estimators (in pre-alpha)

    LinearMixture
    Conv1dMixture, Conv2dMixture, Conv3dMixture, ConvTranspose1dMixture, ConvTranspose2dMixture, ConvTranspose3dMixture
    LSTMMixture
    

Please refer to documentation of Bayesian layers for details.

Other features include:

Installation

Install from source:

git clone https://github.com/IntelLabs/bayesian-torch
cd bayesian-torch
pip install .

This code has been tested on PyTorch v1.6.0 and torchvision v0.7.0 with python 3.7.7.

Dependencies:

  • Create conda environment with python=3.7
  • Install PyTorch and torchvision packages within conda environment following instructions from PyTorch install guide
  • conda install -c conda-forge accimage
  • pip install tensorboard
  • pip install scikit-learn

Example usage

We have provided example model implementations using the Bayesian layers.

We also provide example usages and scripts to train/evaluate the models. The instructions for CIFAR10 examples is provided below, similar scripts for ImageNet and MNIST are available.

cd bayesian_torch

Training

To train Bayesian ResNet on CIFAR10, run this command:

Mean-field variational inference (Reparameterized Monte Carlo estimator)

sh scripts/train_bayesian_cifar.sh

Mean-field variational inference (Flipout Monte Carlo estimator)

sh scripts/train_bayesian_flipout_cifar.sh

To train deterministic ResNet on CIFAR10, run this command:

Vanilla

sh scripts/train_deterministic_cifar.sh

Evaluation

To evaluate Bayesian ResNet on CIFAR10, run this command:

Mean-field variational inference (Reparameterized Monte Carlo estimator)

sh scripts/test_bayesian_cifar.sh

Mean-field variational inference (Flipout Monte Carlo estimator)

sh scripts/test_bayesian_flipout_cifar.sh

To evaluate deterministic ResNet on CIFAR10, run this command:

Vanilla

sh scripts/test_deterministic_cifar.sh

Citing

If you use this code, please cite as:

@misc{krishnan2020bayesiantorch,
    author = {Ranganath Krishnan and Piero Esposito},
    title = {Bayesian-Torch: Bayesian neural network layers for uncertainty estimation},
    year = {2020},
    publisher = {GitHub},
    howpublished = {\url{https://github.com/IntelLabs/bayesian-torch}}
}

Cite the weight sampling methods as well: Blundell et al. 2015; Wen et al. 2018

Contributors

  • Ranganath Krishnan
  • Piero Esposito

This code is intended for researchers and developers, enables to quantify principled uncertainty estimates from deep neural network predictions using stochastic variational inference in Bayesian neural networks. Feedbacks, issues and contributions are welcome. Email to [email protected] for any questions.

Comments
  • The average should be taken over log probability rather than logits

    The average should be taken over log probability rather than logits

    https://github.com/IntelLabs/bayesian-torch/blob/7abcfe7ff3811c6a5be6326ab91a8d5cb1e8619f/bayesian_torch/examples/main_bayesian_cifar.py#L363-L367 I think the average across the MC runs should be taken over the log probability. However, the output here is the logits before the softmax operation. I think we may first run output = F.log_softmax(output, dim=1) and then take the average.

    There are two equivalent ways to take the average, which I think is more reasonable. The first way is

    for mc_run in range(args.num_mc):
        output, kl = model(input_var)
        output = F.log_softmax(output, dim=1)
        output_.append(output)
        kl_.append(kl)
    output = torch.mean(torch.stack(output_), dim=0)
    loss= F.nll_loss(output, target_var) # this is to replace the original cross_entropy_loss
    

    Or equivalently, we can first take the cross-entropy loss for each MC run, and average the losses at the end:

    loss = 0
    for mc_run in range(args.num_mc):
        output, kl = model(input_var)
        loss = loss + F.cross_entropy(output, target_var, dim=1)
        kl_.append(kl)
    loss = loss / args.num_mc  # this is to replace the original cross_entropy_loss
    
    question 
    opened by Nebularaid2000 5
  • KL divergence not changing during training

    KL divergence not changing during training

    Hello,

    I am trying to make a single layer BNN using the LinearReparameterization layer. I am unable to get it to give reasonable uncertainty estimates, so I started monitoring the KL term from the layers and noticed that it is not changing at all for each epoch. Even when I scale up the KL term in the loss, it remains unchanged.

    I am not sure if this is a bug, or if I am not doing the training correctly.

    My model

    class BNN(nn.Module):
        def __init__(self, input_dim, hidden_dim, output_dim=1):
            super().__init__()
            self.layer1 = LinearReparameterization(input_dim, hidden_dim)
            self.layerf = nn.Linear(hidden_dim, output_dim)
            
        def forward(self, x):
            kl_sum = 0
            x, kl = self.layer1(x)
            kl_sum += kl
            x = F.relu(x)
            x = self.layerf(x)
            return x, kl_sum
    

    and my training loop

    model = BNN(X_train.shape[-1], 100).to(device)
    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
    criterion = torch.nn.MSELoss()
    
    for epoch in pbar:
            running_kld_loss = 0
            running_mse_loss = 0
            running_loss = 0
            for datapoints, labels in dataloader_train:
                optimizer.zero_grad()
                
                output, kl = model(datapoints)
                kl = get_kl_loss(model)
                
                # calculate loss with kl term for Bayesian layers
                mse_loss = criterion(output, labels)
                loss = mse_loss + kl * kld_beta / batch_size
                
                loss.backward()
                optimizer.step()
                
                running_mse_loss += mse_loss.detach().numpy()
                running_kld_loss += kl.detach().numpy()
                running_loss += loss.detach().numpy()
                
            status.update({
                'Epoch': epoch, 
                'loss': running_loss/len(dataloader_train),
                'kl': running_kld_loss/len(dataloader_train),
                'mse': running_mse_loss/len(dataloader_train)
            })
    

    When I print the KL loss, it starts at ~5.0 and does not decrease at all.

    opened by gkwt 4
  • Pytorch version issue

    Pytorch version issue

    Hi, it seems that this software only supports Pytorch 1.8.1 LTS or newer version. When I try to use this code in my own project(which is mainly based on Pytorch 1.4.0), some conflicts occur and seemingly unavoidable. Could you please update this software to make it also support some older version Pytorch, for example, 1.4.0. Great Thanks!!!

    opened by hebowei2000 4
  • conv_transpose2d parameter order problem

    conv_transpose2d parameter order problem

    https://github.com/IntelLabs/bayesian-torch/blob/f6f516e9b3721466aa0036c735475a421cc3ce80/bayesian_torch/layers/variational_layers/conv_variational.py#L784-L786

    image

    When I try to convert a deterministic autoencoder into a bayesian one with a ConvTranspose2d layer I get the error "Exception has occurred: TypeError conv_transpose2d(): argument 'groups' (position 7) must be int, not tuple" which I suspect comes from self.dilation and self.group which are swaped.

    opened by pierreosselin 3
  • Let the models return prediction only, saving KL Divergence as an attribute

    Let the models return prediction only, saving KL Divergence as an attribute

    Closes #7 .

    Let the user, if they want, to return predictions only on forward method, while saving kl divergence as an attribute. This is important to make it easier to integrate into PyTorch models.

    Also, it does not break the lib as it is: we added a new parameter on forward method that defaults to True and, if manually set to false, returns predictions only.

    Performed the following changes, on all layers:

    • Added return_kl on all forward methods, defaulting to True. If set to false, won't return kl.
    • Added a new kl attribute to each layer, updating it at every feedforward step. Useful when integrating with already-built PyTorch models.

    That should help integrating with PyTorch experiments while keeping backward compatibility towards this lib.

    enhancement 
    opened by piEsposito 3
  • Fix KL computation

    Fix KL computation

    Hello,

    I think there might be a few problems in your model definitions.

    In particular:

    • in resnet_flipout.py and resnet_variational.py you only sum the kl of the last block inside self.layerN
    • in resnet_flipout_large.py and resnet_variational_large.py you check for is None while you probably want is not None or actually no check at all since it can't be None in any reasonable setting. Also the str(layer) check is odd since it contains a BasicBlock or BottleNeck object (you're looping over an nn.Sequential of blocks). In fact in this code that string check is very likely superfluous (didn't test this, but I did include it in this PR as example)

    I hope you can confirm and perhaps fix these issues, which will help me (and maybe others) in building on your nice codebase :)

    opened by y0ast 3
  • Enable the Bayesian layer to freeze the parameters to their mean values

    Enable the Bayesian layer to freeze the parameters to their mean values

    I think it would be good to provide an option to freeze the weights and biases to the mean value when inferencing. The forward function would somehow look like this:

    def forward(self, input, sample=True):
        if sample:
            # do sampling and forward as in the current code
        else:
            # set weight=self.mu_weight
            # set bias=self.mu_bias
            # (optional) set kl=0, since it is useless in this case
        return out, kl
    
    opened by Nebularaid2000 2
  • FR: Enable forward method of Bayesian Layers to return value only for smoother integration with PyTorch

    FR: Enable forward method of Bayesian Layers to return value only for smoother integration with PyTorch

    It would be nice if we could store the KL divergence value as an attribute of the Bayesian Layers and return them on the forward method only if needed.

    With that we can have less friction on integration with PyTorch. being able to "plug and play" with bayesian-torch layers on deterministic models.

    It would be something like that:

    def forward(self, x, return_kl=False):
        ...
        self.kl = kl
    
        if return_kl:
            return out, kl
        return out   
    

    We then can get it from the bayesian layers when calculating the loss with no harm or hard changes to the code, which might encourage users to try the lib.

    I can work on that also.

    enhancement 
    opened by piEsposito 2
  • modifing the Scripts for any arbitrary output size

    modifing the Scripts for any arbitrary output size

    I am trying to use these repo for classification with 3 output nodes. However, in the fully connected layer, I got the error of size mismatch. Can you help me with this issue?

    question 
    opened by narminGhaffari 2
  • add mu_kernel to of delta_kernel in flipout layers?

    add mu_kernel to of delta_kernel in flipout layers?

    Hi,

    Shouldn't mu_kernel be added to delta_kernel in the code below?

    Best, Lewis

    diff --git a/bayesian_torch/layers/flipout_layers/conv_flipout.py b/bayesian_torch/layers/flipout_layers/conv_flipout.py
    index 4b3e88d..719cfdc 100644
    --- a/bayesian_torch/layers/flipout_layers/conv_flipout.py
    +++ b/bayesian_torch/layers/flipout_layers/conv_flipout.py
    @@ -165,7 +165,7 @@ class Conv1dFlipout(BaseVariationalLayer_):
             sigma_weight = torch.log1p(torch.exp(self.rho_kernel))
             eps_kernel = self.eps_kernel.data.normal_()
     
    -        delta_kernel = (sigma_weight * eps_kernel)
    +        delta_kernel = (sigma_weight * eps_kernel) + self.mu_kernel 
     
             kl = self.kl_div(self.mu_kernel, sigma_weight, self.prior_weight_mu,
                              self.prior_weight_sigma)
    
    opened by burntcobalt 2
  • Kernel_size

    Kernel_size

    The Conv2dReparameterization only allows kernels with same dim (e.g., 2×2) However, some CNN model has different kernels (e.g., in inceptionresnetv2, the kernel size in block17 is 1×7)

    So, I modified the code in conv_variational.py from:

            self.mu_kernel = Parameter(
                torch.Tensor(out_channels, in_channels // groups, kernel_size,
                             kernel_size))
            self.rho_kernel = Parameter(
                torch.Tensor(out_channels, in_channels // groups, kernel_size,
                             kernel_size))
            self.register_buffer(
                'eps_kernel',
                torch.Tensor(out_channels, in_channels // groups, kernel_size,
                             kernel_size),
                persistent=False)
            self.register_buffer(
                'prior_weight_mu',
                torch.Tensor(out_channels, in_channels // groups, kernel_size,
                             kernel_size),
                persistent=False)
            self.register_buffer(
                'prior_weight_sigma',
                torch.Tensor(out_channels, in_channels // groups, kernel_size,
                             kernel_size),
                persistent=False)
    

    to

            self.mu_kernel = Parameter(
                torch.Tensor(out_channels, in_channels // groups, kernel_size[0],
                             kernel_size[1]))
            self.rho_kernel = Parameter(
                torch.Tensor(out_channels, in_channels // groups, kernel_size[0],
                             kernel_size[1]))
            self.register_buffer(
                'eps_kernel',
                torch.Tensor(out_channels, in_channels // groups, kernel_size[0],
                             kernel_size[1]),
                persistent=False)
            self.register_buffer(
                'prior_weight_mu',
                torch.Tensor(out_channels, in_channels // groups, kernel_size[0],
                             kernel_size[1]),
                persistent=False)
            self.register_buffer(
                'prior_weight_sigma',
                torch.Tensor(out_channels, in_channels // groups, kernel_size[0],
                             kernel_size[1]),
                persistent=False)
    

    also, the kernel_size=d.kernel_size[0] was changes to kernel_size=d.kernel_size in dnn_to_cnn.py

    enhancement 
    opened by flydephone 1
  • How bayesian network be used in quantization?

    How bayesian network be used in quantization?

    @peteriz @jpablomch @ranganathkrishnan we can get the $\mu$ and $\sigma$ of each weight ,so how it can be used to quantization which mapping the $w_{float32 }$ into $w_{int8}$

    enhancement 
    opened by LeopoldACC 1
Releases(v0.3.0)
  • v0.3.0(Dec 14, 2022)

  • v0.2.0-alpha(Jan 27, 2022)

    Includes dnn_to_bnn new feature: An API to convert deterministic deep neural network (dnn) model of any architecture to Bayesian deep neural network (bnn) model, simplifying the model definition i.e. drop-in replacements of Convolutional, Linear and LSTM layers to corresponding Bayesian layers. This will enable seamless conversion of existing topology of larger models to Bayesian deep neural network models for extending towards uncertainty-aware applications.

    Source code(tar.gz)
    Source code(zip)
  • v0.2.0(Jan 27, 2022)

    Includes dnn_to_bnn new feature: An API to convert deterministic deep neural network (dnn) model of any architecture to Bayesian deep neural network (bnn) model, simplifying the model definition i.e. drop-in replacements of Convolutional, Linear and LSTM layers to corresponding Bayesian layers. This will enable seamless conversion of existing topology of larger models to Bayesian deep neural network models for extending towards uncertainty-aware applications.

    Full Changelog: https://github.com/IntelLabs/bayesian-torch/compare/v0.1...v0.2.0

    Source code(tar.gz)
    Source code(zip)
Owner
Intel Labs
Intel Labs
Blender Python - Node-based multi-line text and image flowchart

MindMapper v0.8 Node-based text and image flowchart for Blender Mindmap with shortcuts visible: Mindmap with shortcuts hidden: Notes This was requeste

SpectralVectors 58 Oct 08, 2022
ROS support for Velodyne 3D LIDARs

Overview Velodyne1 is a collection of ROS2 packages supporting Velodyne high definition 3D LIDARs3. Warning: The master branch normally contains code

ROS device drivers 543 Dec 30, 2022
MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

Facebook Research 338 Dec 29, 2022
Multi-resolution SeqMatch based long-term Place Recognition

MRS-SLAM for long-term place recognition In this work, we imply an multi-resolution sambling based visual place recognition method. This work is based

METASLAM 6 Dec 06, 2022
tinykernel - A minimal Python kernel so you can run Python in your Python

tinykernel - A minimal Python kernel so you can run Python in your Python

fast.ai 37 Dec 02, 2022
Walk with fastai

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Walk with fastai What is this p

Walk with fastai 124 Dec 10, 2022
An addernet CUDA version

Training addernet accelerated by CUDA Usage cd adder_cuda python setup.py install cd .. python main.py Environment pytorch 1.10.0 CUDA 11.3 benchmark

LingXY 4 Jun 20, 2022
PyTorch implementation of "A Simple Baseline for Low-Budget Active Learning".

A Simple Baseline for Low-Budget Active Learning This repository is the implementation of A Simple Baseline for Low-Budget Active Learning. In this pa

10 Nov 14, 2022
Tensorflow-Project-Template - A best practice for tensorflow project template architecture.

Tensorflow Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot of practice and contributi

Mahmoud G. Salem 3.6k Dec 22, 2022
(CVPR 2022 Oral) Official implementation for "Surface Representation for Point Clouds"

RepSurf - Surface Representation for Point Clouds [CVPR 2022 Oral] By Haoxi Ran* , Jun Liu, Chengjie Wang ( * : corresponding contact) The pytorch off

Haoxi Ran 264 Dec 23, 2022
Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech This repository is the official implementation of "Meta-TTS: Meta-Learning for Few

Sung-Feng Huang 128 Dec 25, 2022
A Python implementation of global optimization with gaussian processes.

Bayesian Optimization Pure Python implementation of bayesian global optimization with gaussian processes. PyPI (pip): $ pip install bayesian-optimizat

fernando 6.5k Jan 02, 2023
Automatic Number Plate Recognition using Contours and Convolution Neural Networks (CNN)

Cite our paper if you find this project useful https://www.ijariit.com/manuscripts/v7i4/V7I4-1139.pdf Abstract Image processing technology is used in

Adithya M 2 Jun 28, 2022
ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプル

ByteTrack-ONNX-Sample ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプルです。 ONNXに変換したモデルも同梱しています。 変換自体を試したい方はByteT

KazuhitoTakahashi 16 Oct 26, 2022
Pytorch implementation of the AAAI 2022 paper "Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification"

[AAAI22] Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification We point out the overlooked unbiasedness in long-tailed clas

PatatiPatata 28 Oct 18, 2022
NeRF Meta-Learning with PyTorch

NeRF Meta Learning With PyTorch nerf-meta is a PyTorch re-implementation of NeRF experiments from the paper "Learned Initializations for Optimizing Co

Sanowar Raihan 78 Dec 18, 2022
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
Vision Transformer and MLP-Mixer Architectures

Vision Transformer and MLP-Mixer Architectures Update (2.7.2021): Added the "When Vision Transformers Outperform ResNets..." paper, and SAM (Sharpness

Google Research 6.4k Jan 04, 2023
Official Implementation of DE-DETR and DELA-DETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-DETR and DELA-DETR in

Wen Wang 61 Dec 12, 2022
COPA-SSE contains crowdsourced explanations for the Balanced COPA dataset

COPA-SSE Repository for COPA-SSE: Semi-Structured Explanations for Commonsense Reasoning. COPA-SSE contains crowdsourced explanations for the Balanced

Ana Brassard 5 Jul 31, 2022