The Official Repository for "Generalized OOD Detection: A Survey"

Overview

Generalized Out-of-Distribution Detection: A Survey

paper   recruit   welcome

benchmark

1. Overview

This repository is with our survey paper:

Title: Generalized Out-of-Distribution Detection: A Survey
Authors: Jingkang Yang1, Kaiyang Zhou1, Yixuan Li2, Ziwei Liu1
Institutions: 1[email protected], 2University of Wisconsin-Madison.

This survey comprehensively reviews the similar topics of outlier detection (OD), anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and out-of-distribution (OOD) detection, extensively compares their commomality and differences, and eventually unifies them under a big umbrella of "generalized OOD detection" framework.

We hope that this survey can help readers and participants better understand the open-world field centered on OOD detection. At the same time, it urges future work to learn, compare, and develop ideas and methods from the broader scope of generalized OOD detection, with clear problem definition and proper benchmarking.

We prepare this repository for the following two reasons:

  1. We consider it an awesome list to easily access the references mentioned in the paper Table 1. We also believe this list will continue to include more promising works as new works appear. Please feel free to nominate good related works with Pull Requests.
  2. We hope this repository becomes a discussion panel for readers to ask questions, raise concerns, and make constructive comments for the broad generalized OOD detection field. Please feel free to post your ideas in the Issues.

We are also planning to build an evaluation benchmark to compare representative generalized OOD detection methods from every sub-task to further unify the field. The work will be collaborated with SenseTime EIG Research, which recently have many full-time researcher openings for this benchmarking project and other OOD-related research. Check their Recruitment Info for more information.

benchmark benchmark
Fig.1.1: Two kinds of distribution shift to assist better understanding of our framework. Fig.1.2: Taxonomy diagram of generalized OOD detection framework.

2. Taxonomy

3. Anomaly Detection & One-Class Novelty Detection

4. Multi-Class Novelty Detection & Open Set Recognition

5. Out-of-Distribution Detection

6. Outlier Detection

7. Challenges and Future Direction

8. Conclusion

In this survey, we comprehensively review five topics: AD, ND, OSR, OOD detection, and OD, and unify them as a framework of generalized OOD detection. By articulating the motivations and definitions of each sub-task, we encourage follow-up works to accurately locate their target problems and find the most suitable benchmarks. By sorting out the methodologies for each sub-task, we hope that readers can easily grasp the mainstream methods, identify suitable baselines, and contribute future solutions in light of existing ones. By providing insights, challenges, and future directions, we hope that future works will pay more attention to the existing problems and explore more interactions across other tasks within or even outside the scope of generalized OOD detection.

Citation

If you find our survey and repository useful for your research, please consider citing our paper:

@article{yang2021oodsurvey,
  title={Generalized Out-of-Distribution Detection: A Survey},
  author={Yang, Jingkang and Zhou, Kaiyang and Li, Yixuan and Liu, Ziwei},
  journal={arXiv preprint arXiv:2110.11334},
  year={2021}
}

Acknowledgements

This repository is created and maintained by Jingkang Yang and Peng Wenxuan from NTU; Kunyuan Ding, Zixu Song, Pengyun Wang, Zitang Zhou, and Dejian Zou from BUPT.

Owner
Jingkang Yang
[email protected] PhD Student
Jingkang Yang
PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation

PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation Winner method of the ICCV-2021 SemKITTI-DVPS Challenge. [arxiv] [

Yuan Haobo 38 Jan 03, 2023
A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching.

LPM_Python A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching. The code is established ac

AoxiangFan 11 Nov 07, 2022
GrabGpu_py: a scripts for grab gpu when gpu is free

GrabGpu_py a scripts for grab gpu when gpu is free. WaitCondition: gpu_memory

tianyuluan 3 Jun 18, 2022
[NeurIPS 2021] COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining

COCO-LM This repository contains the scripts for fine-tuning COCO-LM pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: COCO-LM: Correcting an

Microsoft 106 Dec 12, 2022
Code for "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds", CVPR 2021

PV-RAFT This repository contains the PyTorch implementation for paper "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clou

Yi Wei 43 Dec 05, 2022
Sequence Modeling with Structured State Spaces

Structured State Spaces for Sequence Modeling This repository provides implementations and experiments for the following papers. S4 Efficiently Modeli

HazyResearch 896 Jan 01, 2023
QA-GNN: Question Answering using Language Models and Knowledge Graphs

QA-GNN: Question Answering using Language Models and Knowledge Graphs This repo provides the source code & data of our paper: QA-GNN: Reasoning with L

Michihiro Yasunaga 434 Jan 04, 2023
Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems This is our experimental code for RecSys 2021 paper "Learning

11 Jul 28, 2022
DeepSpamReview: Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures. Summer Internship project at CoreView Systems.

Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures Dataset: https://s3.amazonaws.com/fast-ai-nlp/yelp_review_polar

Ashish Salunkhe 37 Dec 17, 2022
The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.

Face Alignment in Full Pose Range: A 3D Total Solution By Jianzhu Guo. [Updates] 2020.8.30: The pre-trained model and code of ECCV-20 are made public

Jianzhu Guo 3.4k Jan 02, 2023
Code for the paper "Improving Vision-and-Language Navigation with Image-Text Pairs from the Web" (ECCV 2020)

Improving Vision-and-Language Navigation with Image-Text Pairs from the Web Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh

Arjun Majumdar 44 Dec 14, 2022
CVPR2020 Counterfactual Samples Synthesizing for Robust VQA

CVPR2020 Counterfactual Samples Synthesizing for Robust VQA This repo contains code for our paper "Counterfactual Samples Synthesizing for Robust Visu

72 Dec 22, 2022
A check for whether the dependency jobs are all green.

alls-green A check for whether the dependency jobs are all green. Why? Do you have more than one job in your GitHub Actions CI/CD workflows setup? Do

Re:actors 33 Jan 03, 2023
Computations and statistics on manifolds with geometric structures.

Geomstats Code Continuous Integration Code coverage (numpy) Code coverage (autograd, tensorflow, pytorch) Documentation Community NEWS: Geomstats is r

875 Dec 31, 2022
This is a custom made virus code in python, using tkinter module.

skeleterrorBetaV0.1-Virus-code This is a custom made virus code in python, using tkinter module. This virus is not harmful to the computer, it only ma

AR 0 Nov 21, 2022
GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data

GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data By Shuchang Zhou, Taihong Xiao, Yi Yang, Dieqiao Feng, Qinyao He, W

Taihong Xiao 141 Apr 16, 2021
python library for invisible image watermark (blind image watermark)

invisible-watermark invisible-watermark is a python library and command line tool for creating invisible watermark over image.(aka. blink image waterm

Shield Mountain 572 Jan 07, 2023
Keras implementation of PersonLab for Multi-Person Pose Estimation and Instance Segmentation.

PersonLab This is a Keras implementation of PersonLab for Multi-Person Pose Estimation and Instance Segmentation. The model predicts heatmaps and vari

OCTI 160 Dec 21, 2022
Implementing a simplified copy of Shazam application from scratch using MinHashing and LSH.

Building Shazam from scratch In this repository we tried to implement a simplified copy of the Shazam application able to tell you the name of a song

Arturo Ghinassi 0 Nov 17, 2022
Space-event-trace - Tracing service for spaceteam events

space-event-trace Tracing service for TU Wien Spaceteam events. This service is

TU Wien Space Team 2 Jan 04, 2022