Predicting Student Attentiveness using OpenCV

Overview

Predicting-Student-Attentiveness-using-OpenCV

The model will predict if a student is attentive or not through facial parameter received through the student's webcam using Face Detection, Drowsiness Detection, and Head Pose Estimation

Libraries Used (To be installed to execute program)

  1. cv2
  2. dlib
  3. numpy
  4. mediapipe
  5. imutils
  6. scipy
  7. glob

Information :

  1. data : The data folder contains test images for cam_calibration.py and a '.dat' file used for placing landmarks on the face using dlib library.

  2. face detectors : This folder contains two face detector models that were used to implement Drowsiness Detection and Head Pose Estimation.

  3. helpermod : This folder contains two helper modules used for implementing Head Pose Estimation.

  4. Drowsiness_Detection.py : The main program for implementing Drowsiness Detection to predict Student Attentiveness.

  5. cam_calibration.py : This program is to be run before running headposedlib.py to implement Head Pose Estimation correctly.

  6. headposedlib.py : This contains the main program for implementing Head Pose Estimation to predict Student Attentiveness.

Steps to run the Program :

  1. Install all the required library packages in your python environment.
  2. Drowsiness_Detection.py can then be run. A new window will popup with the webcamera turning on and the video will displayed on this window. The program will detect face and check if the eyes are opened or closed to predict if the student is attentive or not attentive. To exit the program , press the ESC key.
  3. Run cam_calibration.py, this will give the approximate focal length as output. This focal length has to be modified in the headposedlib.py for correct implementation.
  4. In headposedlib.py, modify the focal length 'f' to the nearest intger value received as output of the cam_calibration.py program.

image

  1. After updating the focal length 'f', run headposedlib.py. A new window will popup with the webcamera turning on and the video will displayed on this window.The program will estimate the position of the head to predict if the student is attentive or not attentive. To exit the program, press the ESC key.
Note : The face detector models used to run Drowsiness_Detection.py and headposedlib.py are given for reference.

Both these programs can be run after the required libraries are installed. Both these programs will open a new window with your video capture through the webcam and will detect the face on the video. To exit these programs, press the ESC key.

Project Done By

Johann Kyle Pinto
Reg No. : 20BKT0009

Owner
Johann Pinto
Johann Pinto
Toolbox of models, callbacks, and datasets for AI/ML researchers.

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch Website • Installation • Main

Pytorch Lightning 1.4k Dec 30, 2022
[AI6101] Introduction to AI & AI Ethics is a core course of MSAI, SCSE, NTU, Singapore

[AI6101] Introduction to AI & AI Ethics is a core course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6101 of Semester 1, AY2021-2022, starting from 08/2021. The instructors of

AccSrd 1 Sep 22, 2022
Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

JAX: Autograd and XLA Quickstart | Transformations | Install guide | Neural net libraries | Change logs | Reference docs | Code search News: JAX tops

Google 21.3k Jan 01, 2023
Code release for Universal Domain Adaptation(CVPR 2019)

Universal Domain Adaptation Code release for Universal Domain Adaptation(CVPR 2019) Requirements python 3.6+ PyTorch 1.0 pip install -r requirements.t

THUML @ Tsinghua University 229 Dec 23, 2022
Unofficial pytorch implementation for Self-critical Sequence Training for Image Captioning. and others.

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 906 Jan 03, 2023
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

2.3k Jan 09, 2023
GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors

GPU implementation of kNN and SNN GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors Supported by numba cuda and faiss library E

Hyeon Jeon 7 Nov 23, 2022
Code repository for our paper "Learning to Generate Scene Graph from Natural Language Supervision" in ICCV 2021

Scene Graph Generation from Natural Language Supervision This repository includes the Pytorch code for our paper "Learning to Generate Scene Graph fro

Yiwu Zhong 64 Dec 24, 2022
Code for the paper "Curriculum Dropout", ICCV 2017

Curriculum Dropout Dropout is a very effective way of regularizing neural networks. Stochastically "dropping out" units with a certain probability dis

Pietro Morerio 21 Jan 02, 2022
Supporting code for the paper "Dangers of Bayesian Model Averaging under Covariate Shift"

Dangers of Bayesian Model Averaging under Covariate Shift This repository contains the code to reproduce the experiments in the paper Dangers of Bayes

Pavel Izmailov 25 Sep 21, 2022
A tool for calculating distortion parameters in coordination complexes.

OctaDist Octahedral distortion calculator: A tool for calculating distortion parameters in coordination complexes. https://octadist.github.io/ Registe

OctaDist 12 Oct 04, 2022
Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Hrishikesh Kamath 31 Nov 20, 2022
Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral]

Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral] Learning to Disambiguate Strongly In

Zicong Fan 40 Dec 22, 2022
FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation.

FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation [Project] [Paper] [arXiv] [Home] Official implementation of FastFCN:

Wu Huikai 815 Dec 29, 2022
The official implementation of the research paper "DAG Amendment for Inverse Control of Parametric Shapes"

DAG Amendment for Inverse Control of Parametric Shapes This repository is the official Blender implementation of the paper "DAG Amendment for Inverse

Elie Michel 157 Dec 26, 2022
Python implementation of ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images, AAAI2022.

ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images Binh M. Le & Simon S. Woo, "ADD:

2 Oct 24, 2022
Tutorial page of the Climate Hack, the greatest hackathon ever

Tutorial page of the Climate Hack, the greatest hackathon ever

UCL Artificial Intelligence Society 12 Jul 02, 2022
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023
A PyTorch implementation of "Semi-Supervised Graph Classification: A Hierarchical Graph Perspective" (WWW 2019)

SEAL ⠀⠀⠀ A PyTorch implementation of Semi-Supervised Graph Classification: A Hierarchical Graph Perspective (WWW 2019) Abstract Node classification an

Benedek Rozemberczki 202 Dec 27, 2022
Meli Data Challenge 2021 - First Place Solution

My solution for the Meli Data Challenge 2021

Matias Moreyra 23 Mar 09, 2022