A non-linear, non-parametric Machine Learning method capable of modeling complex datasets

Overview

Fast Symbolic Regression

Symbolic Regression is a non-linear, non-parametric Machine Learning method capable of modeling complex data sets. fastsr aims at providing the most simple, powerful models possible by optimizing not only for error but also for model complexity. fastsr is built on top of fastgp, a numpy implementation of genetic programming built on top of deap. All estimators adhere to the sklearn estimator interface and can thus be used in pipelines.

fastsr was designed and developed by the Morphology, Evolution & Cognition Laboratory at the University of Vermont. It extends research code which can be found here.

Installation

fastsr is compatible with Python 2.7+.

pip install fastsr

Example Usage

Symbolic Regression is really good at fitting nonlinear functions. Let's try to fit the third order polynomial x^3 + x^2 + x. This is the "regression" example from the examples folder.

import matplotlib.pyplot as plt

import numpy as np

from fastsr.estimators.symbolic_regression import SymbolicRegression

from fastgp.algorithms.fast_evaluate import fast_numpy_evaluate
from fastgp.parametrized.simple_parametrized_terminals import get_node_semantics
def target(x):
    return x**3 + x**2 + x

Now we'll generate some data on the domain [-10, 10].

X = np.linspace(-10, 10, 100, endpoint=True)
y = target(X)

Finally we'll create and fit the Symbolic Regression estimator and check the score.

sr = SymbolicRegression(seed=72066)
sr.fit(X, y)
score = sr.score(X, y)
Score: 0.0

Whoa! That's not much error. Don't get too used to scores like that though, real data sets aren't usually as simple as a third order polynomial.

fastsr uses Genetic Programming to fit the data. That means equations are evolving to fit the data better and better each generation. Let's have a look at the best individuals and their respective scores.

print('Best Individuals:')
sr.print_best_individuals()
Best Individuals:
0.0 : add(add(square(X0), cube(X0)), X0)
34.006734006733936 : add(square(X0), cube(X0))
2081.346746380927 : add(cube(X0), X0)
2115.3534803876605 : cube(X0)
137605.24466869785 : add(add(X0, add(X0, X0)), add(X0, X0))
141529.89102341252 : add(add(X0, X0), add(X0, X0))
145522.55084614072 : add(add(X0, X0), X0)
149583.22413688237 : add(X0, X0)
151203.96034032793 : numpy_protected_sqrt(cube(numpy_protected_log_abs(exp(X0))))
151203.96034032793 : cube(numpy_protected_sqrt(X0))
153711.91089563753 : numpy_protected_log_abs(exp(X0))
153711.91089563753 : X0
155827.26437602515 : square(X0)
156037.81673350732 : add(numpy_protected_sqrt(X0), cbrt(X0))
157192.02956807753 : numpy_protected_sqrt(exp(cbrt(X0)))

At the top we find our best individual, which is exactly the third order polynomial we defined our target function to be. You might be confused as to why we consider all these other individuals, some with very large errors be be "best". We can look through the history object to see some of the equations that led up to our winning model by ordering by error.

history = sr.history_
population = list(filter(lambda x: hasattr(x, 'error'), list(sr.history_.genealogy_history.values())))
population.sort(key=lambda x: x.error, reverse=True)

Let's get a sample of the unique solutions. There are quite a few so the print statements have been omitted.

X = X.reshape((len(X), 1))
i = 1
previous_errror = population[0]
unique_individuals = []
while i < len(population):
    ind = population[i]
    if ind.error != previous_errror:
        print(str(i) + ' | ' + str(ind.error) + ' | ' + str(ind))
        unique_individuals.append(ind)
    previous_errror = ind.error
    i += 1

Now we can plot the equations over the target functions.

def plot(index):
    plt.plot(X, y, 'r')
    plt.axis([-10, 10, -1000, 1000])
    y_hat = fast_numpy_evaluate(unique_individuals[index], sr.pset_.context, X, get_node_semantics)
    plt.plot(X, y_hat, 'g')
    plt.savefig(str(i) + 'ind.png')
    plt.gcf().clear()

i = 0
while i < len(unique_individuals):
    plot(i)
    i += 10
i = len(unique_individuals) - 1
plot(i)

Stitched together into a gif we get a view into the evolutionary process.

Convergence Gif

Fitness Age Size Complexity Pareto Optimization

In addition to minimizing the error when creating an interpretable model it's often useful to minimize the size of the equations and their complexity (as defined by the order of an approximating polynomial[1]). In Multi-Objective optimization we keep all individuals that are not dominated by any other individuals and call this group the Pareto Front. These are the individuals printed in the Example Usage above. The age component helps prevent the population of equations from falling into a local optimum and was introduced in AFPO [2] but is out of the scope of this readme.

The result of this optimization technique is that a range of solutions are considered "best" individuals. Although in practice you will probably be interested in the top or several top individuals, be aware that the population as a whole was pressured into keeping individual equations as simple as possible in addition to keeping error as low as possible.

Literature Cited

  1. Ekaterina J Vladislavleva, Guido F Smits, and Dick Den Hertog. 2009. Order of nonlinearity as a complexity measure for models generated by symbolic regression via pareto genetic programming. IEEE Transactions on Evolutionary Computation 13, 2 (2009), 333–349.
  2. Michael Schmidt and Hod Lipson. 2011. Age-fitness pareto optimization. In Genetic Programming Theory and Practice VIII. Springer, 129–146.
Owner
VAMSHI CHOWDARY
𝐃𝐀𝐓𝐀 𝐒𝐂𝐈𝐄𝐍𝐂𝐄 𝐄𝐍𝐓𝐇𝐔𝐒𝐈𝐀𝐒𝐓
VAMSHI CHOWDARY
Prototype for Baby Action Detection and Classification

Baby Action Detection Table of Contents About Install Run Predictions Demo About An attempt to harness the power of Deep Learning to come up with a so

Shreyas K 30 Dec 16, 2022
Ipython notebook presentations for getting starting with basic programming, statistics and machine learning techniques

Data Science 45-min Intros Every week*, our data science team @Gnip (aka @TwitterBoulder) gets together for about 50 minutes to learn something. While

Scott Hendrickson 1.6k Dec 31, 2022
Lux AI environment interface for RLlib multi-agents

Lux AI interface to RLlib MultiAgentsEnv For Lux AI Season 1 Kaggle competition. LuxAI repo RLlib-multiagents docs Kaggle environments repo Please let

Jaime 12 Nov 07, 2022
Code and description for my BSc Project, September 2021

BSc-Project Disclaimer: This repo consists of only the additional python scripts necessary to run the agent. To run the project on your own personal d

Matin Tavakoli 20 Jul 19, 2022
SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

Sayed Hashim 3 Nov 15, 2022
Public scripts, services, and configuration for running a smart home K3S network cluster

makerhouse_network Public scripts, services, and configuration for running MakerHouse's home network. This network supports: TODO features here For mo

Scott Martin 1 Jan 15, 2022
Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Oral)

CMT Code for paper Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Best Paper Award) [Paper] [Site] Directory Struc

Zhaokai Wang 198 Dec 27, 2022
LIVECell - A large-scale dataset for label-free live cell segmentation

LIVECell dataset This document contains instructions of how to access the data associated with the submitted manuscript "LIVECell - A large-scale data

Sartorius Corporate Research 112 Jan 07, 2023
Build upon neural radiance fields to create a scene-specific implicit 3D semantic representation, Semantic-NeRF

Semantic-NeRF: Semantic Neural Radiance Fields Project Page | Video | Paper | Data In-Place Scene Labelling and Understanding with Implicit Scene Repr

Shuaifeng Zhi 243 Jan 07, 2023
A PyTorch implementation of "DGC-Net: Dense Geometric Correspondence Network"

DGC-Net: Dense Geometric Correspondence Network This is a PyTorch implementation of our work "DGC-Net: Dense Geometric Correspondence Network" TL;DR A

191 Dec 16, 2022
DL course co-developed by YSDA, HSE and Skoltech

Deep learning course This repo supplements Deep Learning course taught at YSDA and HSE @fall'21. For previous iteration visit the spring21 branch. Lec

Yandex School of Data Analysis 1.3k Dec 30, 2022
All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

Daniel Bourke 3.4k Jan 07, 2023
Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning

Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning. Circuit Training is an open-s

Google Research 479 Dec 25, 2022
A web application that provides real time temperature and humidity readings of a house.

About A web application which provides real time temperature and humidity readings of a house. If you're interested in the data collected so far click

Ben Thompson 3 Jan 28, 2022
The codes of paper 'Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees'

Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees This project contains the codes of pap

0 Apr 20, 2022
4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022

A Two-Stage Shake-Shake Network for Long-tailed Recognition of SAR Aerial View Objects 4st place solution for the PBVS 2022 Multi-modal Aerial View Ob

LinpengPan 5 Nov 09, 2022
This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021.

SG2HOI This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021. Installation Pytorch 1.7

HT 10 Dec 20, 2022
Lightweight plotting to the terminal. 4x resolution via Unicode.

Uniplot Lightweight plotting to the terminal. 4x resolution via Unicode. When working with production data science code it can be handy to have plotti

Olav Stetter 203 Dec 29, 2022
Official PyTorch implementation of the paper: DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample

DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample (ICCV 2021 Oral) Project | Paper Official PyTorch implementation of the pape

Eliahu Horwitz 393 Dec 22, 2022
Pytorch code for "State-only Imitation with Transition Dynamics Mismatch" (ICLR 2020)

This repo contains code for our paper State-only Imitation with Transition Dynamics Mismatch published at ICLR 2020. The code heavily uses the RL mach

20 Sep 08, 2022