AttGAN: Facial Attribute Editing by Only Changing What You Want (IEEE TIP 2019)

Overview

News

  • 11 Jan 2020: We clean up the code to make it more readable! The old version is here: v1.

     


AttGAN
TIP Nov. 2019, arXiv Nov. 2017

TensorFlow implementation of AttGAN: Facial Attribute Editing by Only Changing What You Want.

Related

Exemplar Results

  • See results.md for more results, we try higher resolution and more attributes (all 40 attributes!!!)

  • Inverting 13 attributes respectively

    from left to right: Input, Reconstruction, Bald, Bangs, Black_Hair, Blond_Hair, Brown_Hair, Bushy_Eyebrows, Eyeglasses, Male, Mouth_Slightly_Open, Mustache, No_Beard, Pale_Skin, Young

Usage

  • Environment

    • Python 3.6

    • TensorFlow 1.15

    • OpenCV, scikit-image, tqdm, oyaml

    • we recommend Anaconda or Miniconda, then you can create the AttGAN environment with commands below

      conda create -n AttGAN python=3.6
      
      source activate AttGAN
      
      conda install opencv scikit-image tqdm tensorflow-gpu=1.15
      
      conda install -c conda-forge oyaml
    • NOTICE: if you create a new conda environment, remember to activate it before any other command

      source activate AttGAN
  • Data Preparation

    • Option 1: CelebA-unaligned (higher quality than the aligned data, 10.2GB)

      • download the dataset

      • unzip and process the data

        7z x ./data/img_celeba/img_celeba.7z/img_celeba.7z.001 -o./data/img_celeba/
        
        unzip ./data/img_celeba/annotations.zip -d ./data/img_celeba/
        
        python ./scripts/align.py
    • Option 2: CelebA-HQ (we use the data from CelebAMask-HQ, 3.2GB)

      • CelebAMask-HQ.zip (move to ./data/CelebAMask-HQ.zip): Google Drive or Baidu Netdisk

      • unzip and process the data

        unzip ./data/CelebAMask-HQ.zip -d ./data/
        
        python ./scripts/split_CelebA-HQ.py
  • Run AttGAN

    • training (see examples.md for more training commands)

      \\ for CelebA
      CUDA_VISIBLE_DEVICES=0 \
      python train.py \
      --load_size 143 \
      --crop_size 128 \
      --model model_128 \
      --experiment_name AttGAN_128
      
      \\ for CelebA-HQ
      CUDA_VISIBLE_DEVICES=0 \
      python train.py \
      --img_dir ./data/CelebAMask-HQ/CelebA-HQ-img \
      --train_label_path ./data/CelebAMask-HQ/train_label.txt \
      --val_label_path ./data/CelebAMask-HQ/val_label.txt \
      --load_size 128 \
      --crop_size 128 \
      --n_epochs 200 \
      --epoch_start_decay 100 \
      --model model_128 \
      --experiment_name AttGAN_128_CelebA-HQ
    • testing

      • single attribute editing (inversion)

        \\ for CelebA
        CUDA_VISIBLE_DEVICES=0 \
        python test.py \
        --experiment_name AttGAN_128
        
        \\ for CelebA-HQ
        CUDA_VISIBLE_DEVICES=0 \
        python test.py \
        --img_dir ./data/CelebAMask-HQ/CelebA-HQ-img \
        --test_label_path ./data/CelebAMask-HQ/test_label.txt \
        --experiment_name AttGAN_128_CelebA-HQ
      • multiple attribute editing (inversion) example

        \\ for CelebA
        CUDA_VISIBLE_DEVICES=0 \
        python test_multi.py \
        --test_att_names Bushy_Eyebrows Pale_Skin \
        --experiment_name AttGAN_128
      • attribute sliding example

        \\ for CelebA
        CUDA_VISIBLE_DEVICES=0 \
        python test_slide.py \
        --test_att_name Pale_Skin \
        --test_int_min -2 \
        --test_int_max 2 \
        --test_int_step 0.5 \
        --experiment_name AttGAN_128
    • loss visualization

      CUDA_VISIBLE_DEVICES='' \
      tensorboard \
      --logdir ./output/AttGAN_128/summaries \
      --port 6006
    • convert trained model to .pb file

      python to_pb.py --experiment_name AttGAN_128
  • Using Trained Weights

  • Example for Custom Dataset

Citation

If you find AttGAN useful in your research work, please consider citing:

@ARTICLE{8718508,
author={Z. {He} and W. {Zuo} and M. {Kan} and S. {Shan} and X. {Chen}},
journal={IEEE Transactions on Image Processing},
title={AttGAN: Facial Attribute Editing by Only Changing What You Want},
year={2019},
volume={28},
number={11},
pages={5464-5478},
keywords={Face;Facial features;Task analysis;Decoding;Image reconstruction;Hair;Gallium nitride;Facial attribute editing;attribute style manipulation;adversarial learning},
doi={10.1109/TIP.2019.2916751},
ISSN={1057-7149},
month={Nov},}
Comments
  •  TypeError

    TypeError

    hello I have downloaded trained model and trying to test it but i am getting following error. can u please suggest what went wrong?

    I am testing it on google colab and using only 182000 to 182637 images. TypeError: Input 'filename' of 'ReadFile' Op has type float32 that does not match expected type of string.

    opened by shbnm21 21
  • Unable to use different number of images

    Unable to use different number of images

    Hello. I am using hd - celeba 384 dataset with provided 384_shortcut1_inject1_none_hd model. I am trying to use custom number of images instead of using all 202599 images. I tried to do the following: modify list_attr_celeba.txt file to only include first 20 images and put these 20 images in ./data/img_crop_celeba/*.jpg. However, this is the error I get:

    TypeError: Input 'filename' of 'ReadFile' Op has type float32 that does not match expected type of string.

    I also tried to train with only 20 images and get the same error. I get no errors when running train/test for all 202599 images.

    opened by githubusername001 10
  • Questions about the handling of noise z in DTLCGAN with an encoder attached

    Questions about the handling of noise z in DTLCGAN with an encoder attached

    Hi, I am referring to your DTLCGAN code. According to your last reply, I added an encoder to it and have some questions about your code. In your train.py, the z_sample you choose to sample is generated by: z_ipt_samples = [np.stack([np.random.normal(size=[z_dim])] * len(c_ipt_sample)) for i in range(15)] which is of (15,18,100).

    So, right now I used an encoder, and the noise of z (as well as the z_ipt used in training) here should be replaced by the encoder's output, right?

    But, what does len(c_ipt_sample) here mean? You generated 18 noises for one testing sample? I counted your sampling training, the lowest layer in your decision tree does have 18 images( 233=18). So why do you generate testing sample from bottom to the top, but not the reverse? How can you be certain that this 18 noises all belong to the same person since you generated from bottom to top?

    Besides, should my encoder do the parellel, choosing 18 frontcodes of 18 images and uses them to do the sampling? It seems wrong here because the 18 frontcodes of mine are from 18 different images(or say 18 different persons), the resulting sampling tree was weird(some are ok, and I am confused about them). But if I used the same frontcode of one image(or say the same person) and copy it for 18 times, the training samples are the same, no change of attributes at all.

    opened by XijieJiao 8
  • Facial Attribute

    Facial Attribute

    Hello, @LynnHo Can you tell how we can do facial feature extraction, means if input any image of face and then how we can get the 40 facial attribute from that.

    Thanks.

    opened by xyzdcgan 8
  • The same result for all the attributes.

    The same result for all the attributes.

    As written in the title, I obtain a row of the same images without any changes regardless to the attribute (column). I use custom data-set organized as CelebA. Could you give an advise, what may cause it?

    opened by acecreamu 8
  • Attribute Classifier for Editing Accuracy/Error

    Attribute Classifier for Editing Accuracy/Error

    I'm curious what you used for the attribute classifier to measure the attribute editing accuracy and preservation error. Also do you have any plans to release this trained model? Thanks.

    Attribute Classifier 
    opened by tegillis 7
  • About the performance of pretrained model

    About the performance of pretrained model

    The pre-trained model you provided is not well-performing over the Celeb-A-HQ dataset. So I've got a question that for how many epochs you have trained the pre-trained model and on what data set. Another question is that my use case applies glasses to the face, so I need to know that if I trained a new model from scratch over the Celeb-A-HQ dataset it will help us to achieve my task. can we train the model over a single attribute like eyeglasses or a smile? Thanks in advance.

    opened by alan-ai-learner 4
  • Attribute Style Manipulation

    Attribute Style Manipulation

    Hi, thank you for sharing the great project. I found your attribute style manipulation particularly meaningful and useful for my recent research. I saw from previous issue that you have no plan to open source the code for this part. I have the following questions:

    1. I found nowhere in your paper as for how you derive your θ and the relationship between θ and the image, so how do you get the θ in an unsupervised way for each input?
    2. Is this part's idea (and the way you derived θ) based on the paper 'Generative Attribute Controller with Conditional Filtered Generative Adversarial Networks'? (I found their code is also not open source).
    3. If I want to realize this part myself, could you give me some hints of where to start or any papers and sources I could refer to (there is really very few works on accurate or multiple attribute style manipulation)?

    Thank you!

    opened by XijieJiao 4
  • Cannot get a desired result on CelebA-HQ dataset

    Cannot get a desired result on CelebA-HQ dataset

    Hi there,

    Your work is interesting. I have a problem. Could you help figure it out?

    I applied your method on CelebA-HQ dataset for a single attribute manipulation. But I cannot get the desired result. The result (the interested attribute is "Smiling") at the 59th training epoch is shown as follows. There is no change in the third column images. attgan

    Thanks and Regards,

    opened by EvaFlower 4
  • Hi, I have a question about the training and the test

    Hi, I have a question about the training and the test

    First, I appreciate your excellent work and have been interested in your work since 2018.

    I have a question about the test and training in your work. In advance, I clarify that I consider the case where the value of attributes is binary.

    For training, the value of attributes seems to be -1 or 1. (Read 0 or 1 then, *2 - 1 -> [-1, 1]) (https://github.com/LynnHo/AttGAN-Tensorflow/blob/master/train.py#L161)

    On the other hand, the range of attributes is [-2, 2] for test. ( Read 0 or 1 then, *2 - 1 -> [-1, 1], finally *2 -> [-2, 2] ) (https://github.com/LynnHo/AttGAN-Tensorflow/blob/master/train.py#L246, test_int = 2.0)

    Is it right that you use the different values of the attribute vector in training and test?

    I just find that I cannot reproduce the result of attribute classification without this trick. However, I can reproduce the result by using [-2, 2].

    Thanks!

    opened by FriedRonaldo 4
  • Why attributes are encoded into [-1, 1] not [0, 1]

    Why attributes are encoded into [-1, 1] not [0, 1]

    @LynnHo Hi, I read your code theses days, and I wonder about why the label of attributes has to map into [-1, 1] instead of [0, 1]. It seems that it is very important and has some technical reason because you commented on three exclamation marks on that code. Could you share some experimental knowledge about this?

    opened by ChengBinJin 4
  • Applying your code in datasets from masked face to non-masked face

    Applying your code in datasets from masked face to non-masked face

    I want to apply this code on Celeb-A with fake masked images and i want to remove mask .. so how can i apply this concept .. can you guide me if i can do it or no using your code ?? if yes where should i change in the code just train.py and data.py ??

    opened by Nuha1412 1
  • Style manipulation not robust, very sensitive to varied parameters

    Style manipulation not robust, very sensitive to varied parameters

    How do you get a good balance among varied hyper-parameters like different loss weights, learning_rate when style manipulation is adopted? I found the training of the network very unstable.

    I can get style manipulation results on bangs and eyeglasses, but the control is unstable and the sharpness of images are also affected. The control on eyeglasses is only on the shade and the model has no control on shape and size.

    Except for hyper-parameters, is there any other places where there can be problems like training settings?

    Besides, when implementing style manipulation, except for the loss of generated style controller, do you also use the original attribute loss?

    Looking forward to your answer. Thank you!

    opened by jiaoxijie 2
Releases(v1)
Owner
Zhenliang He
Zhenliang He
Class-Attentive Diffusion Network for Semi-Supervised Classification [AAAI'21] (official implementation)

Class-Attentive Diffusion Network for Semi-Supervised Classification Official Implementation of AAAI 2021 paper Class-Attentive Diffusion Network for

Jongin Lim 7 Sep 20, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion. NÜWA is a unified multimodal p

Microsoft 2.6k Jan 06, 2023
Self-supervised Label Augmentation via Input Transformations (ICML 2020)

Self-supervised Label Augmentation via Input Transformations Authors: Hankook Lee, Sung Ju Hwang, Jinwoo Shin (KAIST) Accepted to ICML 2020 Install de

hankook 96 Dec 29, 2022
Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020)

Causality In Traffic Accident (Under Construction) Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020) Overview Data Prepa

Tackgeun 21 Nov 20, 2022
QuakeLabeler is a Python package to create and manage your seismic training data, processes, and visualization in a single place — so you can focus on building the next big thing.

QuakeLabeler Quake Labeler was born from the need for seismologists and developers who are not AI specialists to easily, quickly, and independently bu

Hao Mai 15 Nov 04, 2022
Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization

Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization This repository contains the source code for the paper (link wi

Rakuten Group, Inc. 0 Nov 19, 2021
Implementing DeepMind's Fast Reinforcement Learning paper

Fast Reinforcement Learning This is a repo where I implement the algorithms in the paper, Fast reinforcement learning with generalized policy updates.

Marcus Chiam 6 Nov 28, 2022
Official NumPy Implementation of Deep Networks from the Principle of Rate Reduction (2021)

Deep Networks from the Principle of Rate Reduction This repository is the official NumPy implementation of the paper Deep Networks from the Principle

Ryan Chan 49 Dec 16, 2022
This project is used for the paper Differentiable Programming of Isometric Tensor Network

This project is used for the paper "Differentiable Programming of Isometric Tensor Network". (arXiv:2110.03898)

Chenhua Geng 15 Dec 13, 2022
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022
MMRazor: a model compression toolkit for model slimming and AutoML

Documentation: https://mmrazor.readthedocs.io/ English | 简体中文 Introduction MMRazor is a model compression toolkit for model slimming and AutoML, which

OpenMMLab 899 Jan 02, 2023
Few-shot NLP benchmark for unified, rigorous eval

FLEX FLEX is a benchmark and framework for unified, rigorous few-shot NLP evaluation. FLEX enables: First-class NLP support Support for meta-training

AI2 85 Dec 03, 2022
LAVT: Language-Aware Vision Transformer for Referring Image Segmentation

LAVT: Language-Aware Vision Transformer for Referring Image Segmentation Where we are ? 12.27 目前和原论文仍有1%左右得差距,但已经力压很多SOTA了 ckpt__448_epoch_25.pth mIoU

zichengsaber 60 Dec 11, 2022
Spectrum Surveying: Active Radio Map Estimation with Autonomous UAVs

Spectrum Surveying: The Python code in this repository implements the simulations and plots the figures described in the paper “Spectrum Surveying: Ac

Universitetet i Agder 2 Dec 06, 2022
Source code for our paper "Empathetic Response Generation with State Management"

Source code for our paper "Empathetic Response Generation with State Management" this repository is maintained by both Jun Gao and Yuhan Liu Model Ove

Yuhan Liu 3 Oct 08, 2022
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
DeepStruc is a Conditional Variational Autoencoder which can predict the mono-metallic nanoparticle from a Pair Distribution Function.

ChemRxiv | [Paper] XXX DeepStruc Welcome to DeepStruc, a Deep Generative Model (DGM) that learns the relation between PDF and atomic structure and the

Emil Thyge Skaaning Kjær 13 Aug 01, 2022
A 1.3B text-to-image generation model trained on 14 million image-text pairs

minDALL-E on Conceptual Captions minDALL-E, named after minGPT, is a 1.3B text-to-image generation model trained on 14 million image-text pairs for no

Kakao Brain 604 Dec 14, 2022
Machine Learning Platform for Kubernetes

Reproduce, Automate, Scale your data science. Welcome to Polyaxon, a platform for building, training, and monitoring large scale deep learning applica

polyaxon 3.2k Dec 23, 2022
This is a collection of all challenges in HKCERT CTF 2021

香港網絡保安新生代奪旗挑戰賽 2021 (HKCERT CTF 2021) This is a collection of all challenges (and writeups) in HKCERT CTF 2021 Challenges ID Chinese name Name Score S

10 Jan 27, 2022