Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization

Overview

Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization

This repository contains the source code for the paper (link will be posted).

Requirements

  • GPU
  • Python 3
  • PyTorch 1.9
    • Earlier version may work, but untested.
  • pip install -r requirements.txt
  • If running ResNet-21 or ImageNet experiments, first download and prepare the ImageNet 2012 dataset with bin/imagenet_prep.sh script.

Running

For non-ImageNet experiments, the main python file is main.py. To see its arguments:

python main.py --help

Running for the first time can take a little longer due to automatic downloading of the MNIST and Cifar-10 dataset from the Internet.

For ImageNet experiments, the main python files are main_imagenet_float.py and main_imagenet_binary.py. Too see their arguments:

python main_imagenet_float.py --help

and

python main_imagenet_binary.py --help

The ImageNet dataset must be already downloaded and prepared. Please see the requirements section for details.

Scripts

The main python file has many options. The following scripts runs training with hyper-parameters given in the paper. Output includes a run-log text file and tensorboard files. These files are saved to ./logs and reused for subsequent runs.

300-100-10

Sensitivity Pre-training

# Layer 1. Learning rate 0.1.
./scripts/mnist/300/sensitivity/layer.sh sensitivity forward 0.1 0
# Layer 2. Learning rate 0.1.
./scripts/mnist/300/sensitivity/layer.sh sensitivity 231 0.1 0
# Layer 3. Learning rate 0.1.
./scripts/mnist/300/sensitivity/layer.sh sensitivity reverse 0.1 0

Output files and run-log are written to ./logs/mnist/val/sensitivity/.

Hyperparam search

For floating-point training:

# Learning rate 0.1.
./scripts/mnist/300/val/float.sh hyperparam 0.1 0

For full binary training:

# Learning rate 0.1.
./scripts/mnist/300/val/binary.sh hyperparam 0.1 0

For iterative training:

# Forward order. Learning rate 0.1.
./scripts/mnist/300/val/layer.sh hyperparam forward 0.1 0
# Reverse order. Learning rate 0.1.
./scripts/mnist/300/val/layer.sh hyperparam reverse 0.1 0
# 1, 3, 2 order. Learning rate 0.1.
./scripts/mnist/300/val/layer.sh hyperparam 132 0.1 0
# 2, 1, 3 order. Learning rate 0.1.
./scripts/mnist/300/val/layer.sh hyperparam 213 0.1 0
# 2, 3, 1 order. Learning rate 0.1.
./scripts/mnist/300/val/layer.sh hyperparam 231 0.1 0
# 3, 1, 2 order. Learning rate 0.1.
./scripts/mnist/300/val/layer.sh hyperparam 312 0.1 0

Output files and run-log are written to ./logs/mnist/val/hyperparam/.

Full Training

For floating-point training:

# Learning rate 0.1. Seed 316.
./scripts/mnist/300/run/float.sh full 0.1 316 0

For full binary training:

# Learning rate 0.1. Seed 316.
./scripts/mnist/300/run/binary.sh full 0.1 316 0

For iterative training:

# Forward order. Learning rate 0.1. Seed 316.
./scripts/mnist/300/run/layer.sh full forward 0.1 316 0
# Reverse order. Learning rate 0.1. Seed 316.
./scripts/mnist/300/run/layer.sh full reverse 0.1 316 0
# 1, 3, 2 order. Learning rate 0.1. Seed 316.
./scripts/mnist/300/run/layer.sh full 132 0.1 316 0
# 2, 1, 3 order. Learning rate 0.1. Seed 316.
./scripts/mnist/300/run/layer.sh full 213 0.1 316 0
# 2, 3, 1 order. Learning rate 0.1. Seed 316.
./scripts/mnist/300/run/layer.sh full 231 0.1 316 0
# 3, 1, 2 order. Learning rate 0.1. Seed 316.
./scripts/mnist/300/run/layer.sh full 312 0.1 316 0

Output files and run-log are written to ./logs/mnist/run/full/.

784-100-10

Sensitivity Pre-training

# Layer 1. Learning rate 0.1.
./scripts/mnist/784/sensitivity/layer.sh sensitivity forward 0.1 0
# Layer 2. Learning rate 0.1.
./scripts/mnist/784/sensitivity/layer.sh sensitivity 231 0.1 0
# Layer 3. Learning rate 0.1.
./scripts/mnist/784/sensitivity/layer.sh sensitivity reverse 0.1 0

Output files and run-log are written to ./logs/mnist/val/sensitivity/.

Hyperparam search

For floating-point training:

# Learning rate 0.1.
./scripts/mnist/784/val/float.sh hyperparam 0.1 0

For full binary training:

# Learning rate 0.1.
./scripts/mnist/784/val/binary.sh hyperparam 0.1 0

For iterative training:

# Forward order. Learning rate 0.1.
./scripts/mnist/784/val/layer.sh hyperparam forward 0.1 0
# Reverse order. Learning rate 0.1.
./scripts/mnist/784/val/layer.sh hyperparam reverse 0.1 0
# 1, 3, 2 order. Learning rate 0.1.
./scripts/mnist/784/val/layer.sh hyperparam 132 0.1 0
# 2, 1, 3 order. Learning rate 0.1.
./scripts/mnist/784/val/layer.sh hyperparam 213 0.1 0
# 2, 3, 1 order. Learning rate 0.1.
./scripts/mnist/784/val/layer.sh hyperparam 231 0.1 0
# 3, 1, 2 order. Learning rate 0.1.
./scripts/mnist/784/val/layer.sh hyperparam 312 0.1 0

Output files and run-log are written to ./logs/mnist/val/hyperparam/.

Full Training

For floating-point training:

# Learning rate 0.1. Seed 316.
./scripts/mnist/784/run/float.sh full 0.1 316 0

For full binary training:

# Learning rate 0.1. Seed 316.
./scripts/mnist/784/run/binary.sh full 0.1 316 0

For iterative training:

# Forward order. Learning rate 0.1. Seed 316.
./scripts/mnist/784/run/layer.sh full forward 0.1 316 0
# Reverse order. Learning rate 0.1. Seed 316.
./scripts/mnist/784/run/layer.sh full reverse 0.1 316 0
# 1, 3, 2 order. Learning rate 0.1. Seed 316.
./scripts/mnist/784/run/layer.sh full 132 0.1 316 0
# 2, 1, 3 order. Learning rate 0.1. Seed 316.
./scripts/mnist/784/run/layer.sh full 213 0.1 316 0
# 2, 3, 1 order. Learning rate 0.1. Seed 316.
./scripts/mnist/784/run/layer.sh full 231 0.1 316 0
# 3, 1, 2 order. Learning rate 0.1. Seed 316.
./scripts/mnist/784/run/layer.sh full 312 0.1 316 0

Output files and run-log are written to ./logs/mnist/run/full/.

Vgg-5

Sensitivity Pre-training

# Layer 1. Learning rate 0.1.
./scripts/cifar10/vgg5/sensitivity/layer.sh sensitivity 1 0.1 0
# Layer 2. Learning rate 0.1.
./scripts/cifar10/vgg5/sensitivity/layer.sh sensitivity 2 0.1 0
# Layer 5. Learning rate 0.1.
./scripts/cifar10/vgg5/sensitivity/layer.sh sensitivity 5 0.1 0

Output files and run-log are written to ./logs/cifar10/val/sensitivity/.

Hyperparam Search

For floating-point training:

# Learning rate 0.1.
./scripts/cifar10/vgg5/val/float.sh hyperparam 0.1 0

For full binary training:

# Learning rate 0.1.
./scripts/cifar10/vgg5/val/binary.sh hyperparam 0.1 0

For iterative training:

# Forward order. Learning rate 0.1.
./scripts/cifar10/vgg5/val/layer.sh hyperparam forward 0.1 0
# Ascend order. Learning rate 0.1.
./scripts/cifar10/vgg5/val/layer.sh hyperparam ascend 0.1 0
# Reverse order. Learning rate 0.1.
./scripts/cifar10/vgg5/val/layer.sh hyperparam reverse 0.1 0
# Descend order. Learning rate 0.1.
./scripts/cifar10/vgg5/val/layer.sh hyperparam descend 0.1 0
# Random order. Learning rate 0.1.
./scripts/cifar10/vgg5/val/layer.sh hyperparam random 0.1 0

Output files and run-log are written to ./logs/cifar10/val/hyperparam/.

Full Training

For floating-point training:

# Learning rate 0.1. Seed 316.
./scripts/cifar10/vgg5/run/float.sh full 0.1 316 0

For full binary training:

# Learning rate 0.1. Seed 316.
./scripts/cifar10/vgg5/run/binary.sh full 0.1 316 0

For iterative training:

# Forward order. Learning rate 0.1. Seed 316.
./scripts/cifar10/vgg5/run/layer.sh full forward 0.1 316 0
# Ascend order. Learning rate 0.1. Seed 316.
./scripts/cifar10/vgg5/run/layer.sh full ascend 0.1 316 0
# Reverse order. Learning rate 0.1. Seed 316.
./scripts/cifar10/vgg5/run/layer.sh full reverse 0.1 316 0
# Descend order. Learning rate 0.1. Seed 316.
./scripts/cifar10/vgg5/run/layer.sh full descend 0.1 316 0
# Random order. Learning rate 0.1. Seed 316.
./scripts/cifar10/vgg5/run/layer.sh full random 0.1 316 0

Output files and run-log are written to ./logs/cifar10/run/full/.

Vgg-9

Sensitivity Pre-training

# Layer 1. Learning rate 0.1.
./scripts/cifar10/vgg9/sensitivity/layer.sh sensitivity 1 0.1 0
# Layer 2. Learning rate 0.1.
./scripts/cifar10/vgg9/sensitivity/layer.sh sensitivity 2 0.1 0
# Layer 5. Learning rate 0.1.
./scripts/cifar10/vgg9/sensitivity/layer.sh sensitivity 5 0.1 0

Output files and run-log are written to ./logs/cifar10/val/sensitivity/.

Hyperparam Search

For floating-point training:

# Learning rate 0.1.
./scripts/cifar10/vgg9/val/float.sh hyperparam 0.1 0

For full binary training:

# Learning rate 0.1.
./scripts/cifar10/vgg9/val/binary.sh hyperparam 0.1 0

For iterative training:

# Forward order. Learning rate 0.1.
./scripts/cifar10/vgg9/val/layer.sh hyperparam forward 0.1 0
# Ascend order. Learning rate 0.1.
./scripts/cifar10/vgg9/val/layer.sh hyperparam ascend 0.1 0
# Reverse order. Learning rate 0.1.
./scripts/cifar10/vgg9/val/layer.sh hyperparam reverse 0.1 0
# Descend order. Learning rate 0.1.
./scripts/cifar10/vgg9/val/layer.sh hyperparam descend 0.1 0
# Random order. Learning rate 0.1.
./scripts/cifar10/vgg9/val/layer.sh hyperparam random 0.1 0

Output files and run-log are written to ./logs/cifar10/val/hyperparam/.

Full Training

For floating-point training:

# Learning rate 0.1. Seed 316.
./scripts/cifar10/vgg9/run/float.sh full 0.1 316 0

For full binary training:

# Learning rate 0.1. Seed 316.
./scripts/cifar10/vgg9/run/binary.sh full 0.1 316 0

For iterative training:

# Forward order. Learning rate 0.1. Seed 316.
./scripts/cifar10/vgg9/run/layer.sh full forward 0.1 316 0
# Ascend order. Learning rate 0.1. Seed 316.
./scripts/cifar10/vgg9/run/layer.sh full ascend 0.1 316 0
# Reverse order. Learning rate 0.1. Seed 316.
./scripts/cifar10/vgg9/run/layer.sh full reverse 0.1 316 0
# Descend order. Learning rate 0.1. Seed 316.
./scripts/cifar10/vgg9/run/layer.sh full descend 0.1 316 0
# Random order. Learning rate 0.1. Seed 316.
./scripts/cifar10/vgg9/run/layer.sh full random 0.1 316 0

Output files and run-log are written to ./logs/cifar10/run/full/.

ResNet-20

Sensitivity Pre-training

# Layer 1. Learning rate 0.1.
./scripts/cifar10/resnet20/sensitivity/layer.sh sensitivity 1 0.1 0
# Layer 2. Learning rate 0.1.
./scripts/cifar10/resnet20/sensitivity/layer.sh sensitivity 2 0.1 0
# ...
# Layer 20. Learning rate 0.1.
./scripts/cifar10/resnet20/sensitivity/layer.sh sensitivity 20 0.1 0

Output files and run-log are written to ./logs/cifar10/val/sensitivity/.

Hyperparam Search

For floating-point training:

# Learning rate 0.1
./scripts/cifar10/resnet20/val/float.sh hyperparam 0.1 0

For full binary training:

# Learning rate 0.1
./scripts/cifar10/resnet20/val/binary.sh hyperparam 0.1 0

For iterative training:

# Forward order. Learning rate 0.1
./scripts/cifar10/resnet20/val/layer.sh hyperparam forward 0.1 0
# Ascend order. Learning rate 0.1
./scripts/cifar10/resnet20/val/layer.sh hyperparam ascend 0.1 0
# Reverse order. Learning rate 0.1
./scripts/cifar10/resnet20/val/layer.sh hyperparam reverse 0.1 0
# Descend order. Learning rate 0.1
./scripts/cifar10/resnet20/val/layer.sh hyperparam descend 0.1 0
# Random order. Learning rate 0.1
./scripts/cifar10/resnet20/val/layer.sh hyperparam random 0.1 0

Output files and run-log are written to ./logs/cifar10/val/hyperparam/.

Full Training

For floating-point training:

# Learning rate 0.1. Seed 316.
./scripts/cifar10/resnet20/run/float.sh full 0.1 316 0

For full binary training:

# Learning rate 0.1. Seed 316.
./scripts/cifar10/resnet20/run/binary.sh full 0.1 316 0

For iterative training:

# Forward order. Learning rate 0.1. Seed 316.
./scripts/cifar10/resnet20/run/layer.sh full forward 0.1 316 0
# Ascend order. Learning rate 0.1. Seed 316.
./scripts/cifar10/resnet20/run/layer.sh full ascend 0.1 316 0
# Reverse order. Learning rate 0.1. Seed 316.
./scripts/cifar10/resnet20/run/layer.sh full reverse 0.1 316 0
# Descend order. Learning rate 0.1. Seed 316.
./scripts/cifar10/resnet20/run/layer.sh full descend 0.1 316 0
# Random order. Learning rate 0.1. Seed 316.
./scripts/cifar10/resnet20/run/layer.sh full random 0.1 316 0

Output files and run-log are written to ./logs/cifar10/run/full/.

ResNet-21

To run experiments for ResNet-21, first download and prepare the ImageNet dataset. See the requirements section at the beginning of this readme. We assume the dataset is prepared and is at ./imagenet.

Sensitivity Pre-training

# Layer 1. Learning rate 0.01.
./scripts/imagenet/layer.sh sensitivity ./imagenet 20 "[20]" 20 1 0.01
# Layer 2. Learning rate 0.01.
./scripts/imagenet/layer.sh sensitivity ./imagenet 20 "[20]" 20 2 0.01
# Layer 21. Learning rate 0.01.
./scripts/imagenet/layer.sh sensitivity ./imagenet 20 "[20]" 20 21 0.01

Output files and run-log are written to ./logs/imagenet/sensitivity/.

Full Training

For floating-point training:

# Learning rate 0.01.
./scripts/imagenet/float.sh full ./imagenet 67 "[42,57]" 0.01

For full binary training:

# Learning rate 0.01.
./scripts/imagenet/binary.sh full ./imagenet 67 "[42,57]" 0.01

For layer-by-layer training:

# Forward order
./scripts/imagenet/layer.sh full ./imagenet 67 "[42,57]" 2 forward 0.01
# Ascending order
./scripts/imagenet/layer.sh full ./imagenet 67 "[42,57]" 2 ascend 0.01

For all scripts, output files and run-log are written to ./logs/imagenet/full/.

License

See LICENSE

Contributing

See the contributing guide for details of how to participate in development of the module.

Owner
Rakuten Group, Inc.
Rakuten Group, Inc.
Official TensorFlow code for the forthcoming paper

~ Efficient-CapsNet ~ Are you tired of over inflated and overused convolutional neural networks? You're right! It's time for CAPSULES :)

Vittorio Mazzia 203 Jan 08, 2023
[ICML 2022] The official implementation of Graph Stochastic Attention (GSAT).

Graph Stochastic Attention (GSAT) The official implementation of GSAT for our paper: Interpretable and Generalizable Graph Learning via Stochastic Att

85 Nov 27, 2022
🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥

🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥

Rishik Mourya 48 Dec 20, 2022
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
TF Image Segmentation: Image Segmentation framework

TF Image Segmentation: Image Segmentation framework The aim of the TF Image Segmentation framework is to provide/provide a simplified way for: Convert

Daniil Pakhomov 546 Dec 17, 2022
GraphLily: A Graph Linear Algebra Overlay on HBM-Equipped FPGAs

GraphLily: A Graph Linear Algebra Overlay on HBM-Equipped FPGAs GraphLily is the first FPGA overlay for graph processing. GraphLily supports a rich se

Cornell Zhang Research Group 39 Dec 13, 2022
Neural Caption Generator with Attention

Neural Caption Generator with Attention Tensorflow implementation of "Show

Taeksoo Kim 510 Nov 30, 2022
🔅 Shapash makes Machine Learning models transparent and understandable by everyone

🎉 What's new ? Version New Feature Description Tutorial 1.6.x Explainability Quality Metrics To help increase confidence in explainability methods, y

MAIF 2.1k Dec 27, 2022
This code reproduces the results of the paper, "Measuring Data Leakage in Machine-Learning Models with Fisher Information"

Fisher Information Loss This repository contains code that can be used to reproduce the experimental results presented in the paper: Awni Hannun, Chua

Facebook Research 43 Dec 30, 2022
Tacotron 2 - PyTorch implementation with faster-than-realtime inference

Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati

NVIDIA Corporation 4.1k Jan 03, 2023
Commonsense Ability Tests

CATS Commonsense Ability Tests Dataset and script for paper Evaluating Commonsense in Pre-trained Language Models Use making_sense.py to run the exper

XUHUI ZHOU 28 Oct 19, 2022
DA2Lite is an automated model compression toolkit for PyTorch.

DA2Lite (Deep Architecture to Lite) is a toolkit to compress and accelerate deep network models. ⭐ Star us on GitHub — it helps!! Frameworks & Librari

Sinhan Kang 7 Mar 22, 2022
Simulated garment dataset for virtual try-on

Simulated garment dataset for virtual try-on This repository contains the dataset used in the following papers: Self-Supervised Collision Handling via

33 Dec 20, 2022
Keras code and weights files for popular deep learning models.

Trained image classification models for Keras THIS REPOSITORY IS DEPRECATED. USE THE MODULE keras.applications INSTEAD. Pull requests will not be revi

François Chollet 7.2k Dec 29, 2022
The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

This repository is the official PyTorch implementation of SAINT. Find the paper on arxiv SAINT: Improved Neural Networks for Tabular Data via Row Atte

Gowthami Somepalli 284 Dec 21, 2022
Implementation of Shape Generation and Completion Through Point-Voxel Diffusion

Shape Generation and Completion Through Point-Voxel Diffusion Project | Paper Implementation of Shape Generation and Completion Through Point-Voxel Di

Linqi Zhou 103 Dec 29, 2022
Code for our EMNLP 2021 paper “Heterogeneous Graph Neural Networks for Keyphrase Generation”

GATER This repository contains the code for our EMNLP 2021 paper “Heterogeneous Graph Neural Networks for Keyphrase Generation”. Our implementation is

Jiacheng Ye 12 Nov 24, 2022
A tight inclusion function for continuous collision detection

Tight-Inclusion Continuous Collision Detection A conservative Continuous Collision Detection (CCD) method with support for minimum separation. You can

Continuous Collision Detection 89 Jan 01, 2023
A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow.

ConvNeXt A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow. A FacebookResearch Implementation on A Conv

Raghvender 2 Feb 14, 2022
Interpretation of T cell states using reference single-cell atlases

Interpretation of T cell states using reference single-cell atlases ProjecTILs is a computational method to project scRNA-seq data into reference sing

Cancer Systems Immunology Lab 139 Jan 03, 2023