TensorFlow Implementation of FOTS, Fast Oriented Text Spotting with a Unified Network.

Overview

FOTS: Fast Oriented Text Spotting with a Unified Network

I am still working on this repo. updates and detailed instructions are coming soon!

Table of Contens

TensorFlow Versions

As for now, the pre-training code is tested on TensorFlow 1.12, 1.14 and 1.15. I may try to implement 2.x version in the future.

Other Requirements

GCC >= 6

Trained Models

Datasets

Train

Pre-train with SynthText

  1. Download pre-trained ResNet-50 from TensorFlow-Slim image classification model library page and place it at 'ckpt/resnet_v1_50' dir.
cd ckpt/resnet_v1_50
wget http://download.tensorflow.org/models/resnet_v1_50_2016_08_28.tar.gz
tar -zxvf resnet_v1_50_2016_08_28.tar.gz
rm resnet_v1_50_2016_08_28.tar.gz
  1. Download Synth800k dataset and place it at data/SynthText/ dir to pre-train the whole net.

  2. Transform(Pre-process) the SynthText data into the ICDAR data format.

python data_provider/SynthText2ICDAR.py
  1. Train with SynthText for 10 epochs(with 1 GPU).
python train.py \
  --max_steps=715625 \
  --gpu_list='0' \
  --checkpoint_path=ckpt/synthText_10eps/ \
  --pretrained_model_path=ckpt/resnet_v1_50/resnet_v1_50.ckpt \
  --training_img_data_dir=data/SynthText/ \
  --training_gt_data_dir=data/SynthText/ \
  --icdar=False \
  1. Visualize pre-pretraining progress with TensorBoard.
tensorboard --logdir=ckpt/synthText_10eps/

Finetune with ICDAR 2015, ICDAR 2017 MLT or ICDAR 2013

(if you are using the pre-trained model, place all of the files in ckpt/synthText_10eps/)

  • Combine ICDAR data before training.

    1. Place ICDAR data under tmp/ foler.
    2. Run the following script to combine the data.
    python combine_ICDAR_data.py --year [year of ICDAR to train(13 or 15 or 17)]
    
  • ICDAR 2017 MLT/pre-finetune for ICDAR 2013 or ICDAR 2015 (text detection task only)

    • Train the pre-trained model with 9,000 images from ICDAR 2017 MLT training and validation datasets(with 1 GPU).
    python train.py \
      --gpu_list='0' \
      --checkpoint_path=ckpt/ICDAR17MLT/ \
      --pretrained_model_path=ckpt/synthText_10eps/ \
      --train_stage=0 \
      --training_img_data_dir=data/ICDAR17MLT/imgs/ \
      --training_gt_data_dir=data/ICDAR17MLT/gts/
    
  • ICDAR 2015

    • Train the model with 1,000 images from ICDAR 2015 training dataset and 229 images from ICDAR 2013 training datasets(with 1 GPU).
    python train.py \
      --gpu_list='0' \
      --checkpoint_path=ckpt/ICDAR15/ \
      --pretrained_model_path=ckpt/ICDAR17MLT/ \
      --training_img_data_dir=data/ICDAR15+13/imgs/ \
      --training_gt_data_dir=data/ICDAR15+13/gts/
    
  • ICDAR 2013(horizontal text only)

    • Train the model with 229 images from ICDAR 2013 training datasets(with 1 GPU).
    python train.py \
      --gpu_list='0' \
      --checkpoint_path=ckpt/ICDAR13/ \
      --pretrained_model_path=ckpt/ICDAR17MLT/ \
      --training_img_data_dir=data/ICDAR13/imgs/ \
      --training_gt_data_dir=data/ICDAR13/gts/
    

Test

Place some images in test_imgs/ dir and specify a trained checkpoint path to see the test result.

python test.py --test_data_path test_imgs/ --checkpoint_path [checkpoint path]

References

Owner
Masao Taketani
Deep Learning research engineer, currently working in Tokyo, Japan. An ex-boxer, who is highly motivated to train one's mind and body.
Masao Taketani
TensorFlow Implementation of FOTS, Fast Oriented Text Spotting with a Unified Network.

FOTS: Fast Oriented Text Spotting with a Unified Network I am still working on this repo. updates and detailed instructions are coming soon! Table of

Masao Taketani 52 Nov 11, 2022
The code for “Oriented RepPoints for Aerail Object Detection”

Oriented RepPoints for Aerial Object Detection The code for the implementation of “Oriented RepPoints”, Under review. (arXiv preprint) Introduction Or

WentongLi 207 Dec 24, 2022
Some codes from PyImageSearch course's and external projects.

👨‍💻 Some codes and projects 👨‍💻 💡 Technologies 📜 Projects 📍 Chrome Dinosaur Controller 📦 Script 📍 Coins Counter 📦 Script 🤓 Author Lucas Biv

Lucas Bivar 25 Oct 24, 2021
textspotter - An End-to-End TextSpotter with Explicit Alignment and Attention

An End-to-End TextSpotter with Explicit Alignment and Attention This is initially described in our CVPR 2018 paper. Getting Started Installation Clone

Tong He 323 Nov 10, 2022
(CVPR 2021) ST3D: Self-training for Unsupervised Domain Adaptation on 3D Object Detection

ST3D Code release for the paper ST3D: Self-training for Unsupervised Domain Adaptation on 3D Object Detection, CVPR 2021 Authors: Jihan Yang*, Shaoshu

CVMI Lab 224 Dec 28, 2022
Repositório para registro de estudo da biblioteca opencv (Python)

OpenCV (Python) Objetivo do Repositório: Registrar avanços no estudo da biblioteca opencv. O repositório estará aberto a qualquer pessoa e há tambem u

1 Jun 14, 2022
A simple document layout analysis using Python-OpenCV

Run the application: python main.py *Note: For first time running the application, create a folder named "output". The application is a simple documen

Roinand Aguila 109 Dec 12, 2022
Face Anonymizer - FaceAnonApp v1.0

Face Anonymizer - FaceAnonApp v1.0 Blur faces from image and video files in /data/files folder. Contents Repo of the source files for the FaceAnonApp.

6 Apr 18, 2022
Detect textlines in document images

Textline Detection Detect textlines in document images Introduction This tool performs border, region and textline detection from document image data

QURATOR-SPK 70 Jun 30, 2022
Python Computer Vision Aim Bot for Roblox's Phantom Forces

Python-Phantom-Forces-Aim-Bot Python Computer Vision Aim Bot for Roblox's Phanto

drag0ngam3s 2 Jul 11, 2022
Source code of our TPAMI'21 paper Dual Encoding for Video Retrieval by Text and CVPR'19 paper Dual Encoding for Zero-Example Video Retrieval.

Dual Encoding for Video Retrieval by Text Source code of our TPAMI'21 paper Dual Encoding for Video Retrieval by Text and CVPR'19 paper Dual Encoding

81 Dec 01, 2022
An official PyTorch implementation of the paper "Learning by Aligning: Visible-Infrared Person Re-identification using Cross-Modal Correspondences", ICCV 2021.

PyTorch implementation of Learning by Aligning (ICCV 2021) This is an official PyTorch implementation of the paper "Learning by Aligning: Visible-Infr

CV Lab @ Yonsei University 30 Nov 05, 2022
An expandable and scalable OCR pipeline

Overview Nidaba is the central controller for the entire OGL OCR pipeline. It oversees and automates the process of converting raw images into citable

81 Jan 04, 2023
Apply different text recognition services to images of handwritten documents.

Handprint The Handwritten Page Recognition Test is a command-line program that invokes HTR (handwritten text recognition) services on images of docume

Caltech Library 117 Jan 02, 2023
The world's simplest facial recognition api for Python and the command line

Face Recognition You can also read a translated version of this file in Chinese 简体中文版 or in Korean 한국어 or in Japanese 日本語. Recognize and manipulate fa

Adam Geitgey 47k Jan 07, 2023
Regions sanitàries (RS), Sectors Sanitàris (SS) i Àrees Bàsiques de Salut (ABS) de Catalunya

Regions sanitàries (RS), Sectors Sanitaris (SS), Àrees de Gestió Assistencial (AGA) i Àrees Bàsiques de Salut (ABS) de Catalunya Fitxers GeoJSON de le

Glòria Macià Muñoz 2 Jan 23, 2022
computer vision, image processing and machine learning on the web browser or node.

Image processing and Machine learning labs   computer vision, image processing and machine learning on the web browser or node note Fast Fourier Trans

ryohei tanaka 487 Nov 11, 2022
Implementation of our paper 'PixelLink: Detecting Scene Text via Instance Segmentation' in AAAI2018

Code for the AAAI18 paper PixelLink: Detecting Scene Text via Instance Segmentation, by Dan Deng, Haifeng Liu, Xuelong Li, and Deng Cai. Contributions

758 Dec 22, 2022
Using python libraries to track hands

Python-HandTracking Using python libraries to track hands on a camera Uses cv2 and mediapipe libraries custom hand tracking module PyCharm IDE Final E

Martin Matsudaira 1 Dec 17, 2021