the official code for ICRA 2021 Paper: "Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation"

Related tags

Deep LearningG2S
Overview

G2S

This is the official code for ICRA 2021 Paper: Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation by Hemang Chawla, Arnav Varma, Elahe Arani and Bahram Zonooz.

alt text

G2S (GPS-to-Scale) Loss is a dynamically-weighted loss that can be added to the appearance-based losses to train any monocular self-supervised depth estimation architecture to get scale-consistant and scale-aware depth estimates at inference.

Here, we provide helper GPS dataloader and the G2S loss classes for using this loss with any model.

For details, please see the Paper and Presentation.

KITTI GPS

The GPS files containing geodesic gps information of raw kitti dataset in local coordinates for training with the g2s loss can be found in the assets folder as kitti_gps_raw.zip.
Unzip the file at /path/to/KITTI/raw_data/sync to merge the GPS files in the expected directory tree structure.

Usage

You can use the G2S class in lossG2S.py within your project for scale-consistent and -aware predictions. This requires using the copresent GPS modality along with images. To load the GPS, please adopt the GPSDataloader class within dataloaderGPS.py into your images dataloader.

Cite Our Work

If you find the code useful in your research, please consider citing our paper:

@inproceedings{chawlavarma2021multimodal,
	author={H. {Chawla} and A. {Varma} and E. {Arani} and B. {Zonooz}},
	booktitle={2021 IEEE International Conference on Robotics and Automation (ICRA)},
	title={Multimodal Scale Consistency and Awareness for Monocular Self-Supervised
	Depth Estimation},
	location={Xi’an, China},
	publisher={IEEE (in press)},
	year={2021}
}

License

This project is licensed under the terms of the MIT license.

Owner
NeurAI
Located at the brain port of Netherlands, the Advanced Research Lab is an innovation center within the NavInfo group. We have a diverse energetic team of resear
NeurAI
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling @ INTERSPEECH 2021 Accepted

NU-Wave — Official PyTorch Implementation NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling Junhyeok Lee, Seungu Han @ MINDsLab Inc

MINDs Lab 242 Dec 23, 2022
Self-Supervised Learning with Kernel Dependence Maximization

Self-Supervised Learning with Kernel Dependence Maximization This is the code for SSL-HSIC, a self-supervised learning loss proposed in the paper Self

DeepMind 29 Dec 29, 2022
This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021.

inverse_attention This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021. Le

Firas Laakom 5 Jul 08, 2022
Diverse Image Generation via Self-Conditioned GANs

Diverse Image Generation via Self-Conditioned GANs Project | Paper Diverse Image Generation via Self-Conditioned GANs Steven Liu, Tongzhou Wang, David

Steven Liu 147 Dec 03, 2022
Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks

Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks Requirements python 0.10+ rdkit 2020.03.3.0 biopython 1.78 openbabel 2.4

Neeraj Kumar 3 Nov 23, 2022
Deep Implicit Moving Least-Squares Functions for 3D Reconstruction

DeepMLS: Deep Implicit Moving Least-Squares Functions for 3D Reconstruction This repository contains the implementation of the paper: Deep Implicit Mo

103 Dec 22, 2022
Yolo object detection - Yolo object detection with python

How to run download required files make build_image make download Docker versio

3 Jan 26, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes

Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes [Paper] Method overview 4DMatch Benchmark 4DMatch is a benchmark for matc

103 Jan 06, 2023
Using Hotel Data to predict High Value And Potential VIP Guests

Description Using hotel data and AI to predict high value guests and potential VIP guests. Hotel can leverage on prediction resutls to run more effect

HCG 12 Feb 14, 2022
190 Jan 03, 2023
Artificial intelligence technology inferring issues and logically supporting facts from raw text

개요 비정형 텍스트를 학습하여 쟁점별 사실과 논리적 근거 추론이 가능한 인공지능 원천기술 Artificial intelligence techno

6 Dec 29, 2021
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Environments Effi

Weirui Ye 671 Jan 03, 2023
Multiple-Object Tracking with Transformer

TransTrack: Multiple-Object Tracking with Transformer Introduction TransTrack: Multiple-Object Tracking with Transformer Models Training data Training

Peize Sun 537 Jan 04, 2023
Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation

FCN.tensorflow Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation (FCNs). The implementation is largely based on the

Sarath Shekkizhar 1.3k Dec 25, 2022
Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Eleftheriadis Emmanouil 1 Oct 09, 2021
OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark

Introduction English | 简体中文 MMAction2 is an open-source toolbox for video understanding based on PyTorch. It is a part of the OpenMMLab project. The m

OpenMMLab 2.7k Jan 07, 2023
Reporting and Visualization for Hazardous Events

Reporting and Visualization for Hazardous Events

Jv Kyle Eclarin 2 Oct 03, 2021
EEGEyeNet is benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty

Introduction EEGEyeNet EEGEyeNet is a benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty. Overview T

Ard Kastrati 23 Dec 22, 2022
S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural Networks via Guided Distribution Calibration (CVPR 2021)

S2-BNN (Self-supervised Binary Neural Networks Using Distillation Loss) This is the official pytorch implementation of our paper: "S2-BNN: Bridging th

Zhiqiang Shen 52 Dec 24, 2022