Project 4 Cloud DevOps Nanodegree

Overview

CircleCI

Project Overview

In this project, you will apply the skills you have acquired in this course to operationalize a Machine Learning Microservice API.

You are given a pre-trained, sklearn model that has been trained to predict housing prices in Boston according to several features, such as average rooms in a home and data about highway access, teacher-to-pupil ratios, and so on. You can read more about the data, which was initially taken from Kaggle, on the data source site. This project tests your ability to operationalize a Python flask app—in a provided file, app.py—that serves out predictions (inference) about housing prices through API calls. This project could be extended to any pre-trained machine learning model, such as those for image recognition and data labeling.

Project Tasks

Your project goal is to operationalize this working, machine learning microservice using kubernetes, which is an open-source system for automating the management of containerized applications. In this project you will:

  • Test your project code using linting
  • Complete a Dockerfile to containerize this application
  • Deploy your containerized application using Docker and make a prediction
  • Improve the log statements in the source code for this application
  • Configure Kubernetes and create a Kubernetes cluster
  • Deploy a container using Kubernetes and make a prediction
  • Upload a complete Github repo with CircleCI to indicate that your code has been tested

You can find a detailed project rubric, here.

The final implementation of the project will showcase your abilities to operationalize production microservices.


Setup the Environment

  • Create a virtualenv with Python 3.7 and activate it. Refer to this link for help on specifying the Python version in the virtualenv.
python3 -m pip install --user virtualenv
# You should have Python 3.7 available in your host. 
# Check the Python path using `which python3`
# Use a command similar to this one:
python3 -m virtualenv --python=<path-to-Python3.7> .devops
source .devops/bin/activate
  • Run make install to install the necessary dependencies

Running app.py

  1. Standalone: python app.py
  2. Run in Docker: ./run_docker.sh
  3. Run in Kubernetes: ./run_kubernetes.sh

Kubernetes Steps

  • Setup and Configure Docker locally
  • Setup and Configure Kubernetes locally
  • Create Flask app in Container
  • Run via kubectl Complete the Dockerfile Specify a working directory. Copy the app.py source code to that directory Install any dependencies in requirements.txt (do not delete the commented # hadolint ignore statement). Expose a port when the container is created; port 80 is standard. Specify that the app runs at container launch.

python3 -m venv ~/.devops source ~/.devops/bin/activate $ make lint

Run a Container & Make a Prediction Build the docker image from the Dockerfile; it is recommended that you use an optional --tag parameter as described in the build documentation. List the created docker images (for logging purposes). Run the containerized Flask app; publish the container’s port (80) to a host port (8080). Run the container using the run_docker.sh script created before following the steps above: $ . ./run_docker.sh After running the container we can able to run the prediction using the make_prediction.sh script:

$ . ./make_prediction.sh

Improve Logging & Save Output Add a prediction log statement Run the container and make a prediction to check the logs $ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES a7d374ad73a6 api "/bin/bash" 36 minutes ago Exited (0) 28 minutes ago exciting_visvesvaraya 89fd55581a44 api "make run-app" 44 minutes ago Exited (2) 44 minutes ago brave_poitras f0b0ece5a9b5 api "make run-app" 46 minutes ago Exited (2) 46 minutes ago elated_brahmagupta a6fcd4749e44 api "make run-app" 48 minutes ago Exited (2) 48 minutes ago dreamy_agnesi

Upload the Docker Image Create a Docker Hub account Built the docker container with this command docker build --tag=<your_tag> . (Don't forget the tag name) Define a dockerpath which is <docker_hub_username>/<project_name> Authenticate and tag image Push your docker image to the dockerpath After complete all steps run the upload using the upload_docker.sh script:

$ . ./upload_docker.sh

Configure Kubernetes to Run Locally Install Kubernetes Install Minikube

Deploy with Kubernetes and Save Output Logs Define a dockerpath which will be “/path”, this should be the same name as your uploaded repository (the same as in upload_docker.sh) Run the docker container with kubectl; you’ll have to specify the container and the port List the kubernetes pods Forward the container port to a host port, using the same ports as before

After complete all steps run the kubernetes using run_kubernetes.sh script:

$ . ./run_kubernetes.sh After running the kubernete make a prediction using the make_prediction.sh script as we do in the second task.

Delete Cluster minikube delete

CircleCI Integration To create the file and folder on GitHub, click the Create new file button on the repo page and type .circleci/config.yml. You should now have in front of you a blank config.yml file in a .circleci folder.

Then you can paste the text from this yaml file into your file, and commit the change to your repository.

It may help to reference this CircleCI blog post on Github integration.

A tool to clone efficiently all the repos in an organization

cloner A tool to clone efficiently all the repos in an organization Installation MacOS (not yet tested) python3 -m venv .venv pip3 install virtualenv

Ramon 6 Apr 15, 2022
Spinnaker is an open source, multi-cloud continuous delivery platform for releasing software changes with high velocity and confidence.

Welcome to the Spinnaker Project Spinnaker is an open-source continuous delivery platform for releasing software changes with high velocity and confid

8.8k Jan 07, 2023
pyinfra automates infrastructure super fast at massive scale. It can be used for ad-hoc command execution, service deployment, configuration management and more.

pyinfra automates/provisions/manages/deploys infrastructure super fast at massive scale. It can be used for ad-hoc command execution, service deployme

Nick Barrett 2.1k Dec 29, 2022
Bash-based Python-venv convenience wrapper

venvrc Bash-based Python-venv convenience wrapper. Demo Install Copy venvrc file to ~/.venvrc, and add the following line to your ~/.bashrc file: # so

1 Dec 29, 2022
A Kubernetes operator that creates UptimeRobot monitors for your ingresses

This operator automatically creates uptime monitors at UptimeRobot for your Kubernetes Ingress resources. This allows you to easily integrate uptime monitoring of your services into your Kubernetes d

Max 49 Dec 14, 2022
Project 4 Cloud DevOps Nanodegree

Project Overview In this project, you will apply the skills you have acquired in this course to operationalize a Machine Learning Microservice API. Yo

1 Nov 21, 2021
Cado Response Integration with Amazon GuardDuty using AWS Lambda

Cado Response Integration with Amazon GuardDuty using AWS Lambda This repository contains a simple example where: An alert is triggered by GuardDuty T

Cado Security 4 Mar 02, 2022
Daemon to ban hosts that cause multiple authentication errors

__ _ _ ___ _ / _|__ _(_) |_ ) |__ __ _ _ _ | _/ _` | | |/ /| '_ \/ _` | ' \

Fail2Ban 7.8k Jan 09, 2023
Chef-like functionality for Fabric

/ / ___ ___ ___ ___ | | )| |___ | | )|___) |__ |__/ | __/ | | / |__ -- Chef-like functionality for Fabric About Fabric i

Sébastien Pierre 1.3k Dec 21, 2022
Glances an Eye on your system. A top/htop alternative for GNU/Linux, BSD, Mac OS and Windows operating systems.

Glances - An eye on your system Summary Glances is a cross-platform monitoring tool which aims to present a large amount of monitoring information thr

Nicolas Hennion 22k Jan 08, 2023
Docker Container wallstreetbets-sentiment-analysis

Docker Container wallstreetbets-sentiment-analysis A docker container using restful endpoints exposed on port 5000 "/analyze" to gather sentiment anal

145 Nov 22, 2022
A colony of interacting processes

NColony Infrastructure for running "colonies" of processes. Hacking $ tox Should DTRT -- if it passes, it means unit tests are passing, and 100% cover

23 Apr 04, 2022
Some automation scripts to setup a deployable development database server (with docker).

Postgres-Docker Database Initializer This is a simple automation script that will create a Docker Postgres database with a custom username, password,

Pysogge 1 Nov 11, 2021
Azure plugins for Feast (FEAture STore)

Feast on Azure This project provides resources to enable running a feast feature store on Azure. Feast Azure Provider The Feast Azure provider acts li

Microsoft Azure 70 Dec 31, 2022
Webinar oficial Zabbix Brasil. Uma série de 4 aulas sobre API do Zabbix.

Repositório de scripts do Webinar de API do Zabbix Webinar oficial Zabbix Brasil. Uma série de 4 aulas sobre API do Zabbix. Nossos encontros [x] 04/11

Robert Silva 7 Mar 31, 2022
Travis CI testing a Dockerfile based on Palantir's remix of Apache Cassandra, testing IaC, and testing integration health of Debian

Testing Palantir's remix of Apache Cassandra with Snyk & Travis CI This repository is to show Travis CI testing a Dockerfile based on Palantir's remix

Montana Mendy 1 Dec 20, 2021
🎡 Build Python wheels for all the platforms on CI with minimal configuration.

cibuildwheel Documentation Python wheels are great. Building them across Mac, Linux, Windows, on multiple versions of Python, is not. cibuildwheel is

Python Packaging Authority 1.3k Jan 02, 2023
A charmed operator for running PGbouncer on kubernetes.

operator-template Description TODO: Describe your charm in a few paragraphs of Markdown Usage TODO: Provide high-level usage, such as required config

Canonical 1 Dec 01, 2022
Create pinned requirements.txt inside a Docker image using pip-tools

Pin your Python dependencies! pin-requirements.py is a script that lets you pin your Python dependencies inside a Docker container. Pinning your depen

4 Aug 18, 2022
Iris is a highly configurable and flexible service for paging and messaging.

Iris Iris core, API, UI and sender service. For third-party integration support, see iris-relay, a stateless proxy designed to sit at the edge of a pr

LinkedIn 715 Dec 28, 2022