The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing".

Overview

BMC

The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing".

BibTex entry available here.

BMC (BPF Memory Cache) is an in-kernel cache for memcached. It enables runtime, crash-safe extension of the Linux kernel to process specific memcached requests before the execution of the standard network stack. BMC does not require modification of neither the Linux kernel nor the memcached application. Running memcached with BMC improves throughput by up to 18x compared to the vanilla memcached application.

Requirements

Linux kernel v5.3 or higher is required to run BMC.

Other software dependencies are required to build BMC and Memcached-SR (see Building BMC and Building Memcached-SR).

Build instructions

Building BMC

BMC must be compiled with libbpf and other header files obtained from kernel sources. The project does not include the kernel sources, but the kernel-src-download.sh and kernel-src-prepare.sh scripts automate the download of the kernel sources and prepare them for the compilation of BMC.

These scripts require the following software to be installed:

gpg curl tar xz make gcc flex bison libssl-dev libelf-dev

The project uses llvm and clang version 9 to build BMC, but more recent versions might work as well:

llvm-9 clang-9

Note that libelf-dev is also required to build libbpf and BMC.

With the previous software installed, BMC can be built with the following:

$ ./kernel-src-download.sh
$ ./kernel-src-prepare.sh
$ cd bmc && make

After BMC has been successfully built, kernel sources can be removed by running the kernel-src-remove.sh script from the project root.

Building Memcached-SR

Memcached-SR is based on memcached v1.5.19. Building it requires the following software:

clang-9 (or gcc-9) automake libevent-dev

Either clang-9 or gcc-9 is required in order to compile memcached without linking issues. Depending on your distribution, you might also need to use the -Wno-deprecated-declarations compilation flag.

Memcached-SR can be built with the following:

$ cd memcached-sr 
$ ./autogen.sh
$ CC=clang-9 CFLAGS='-DREUSEPORT_OPT=1 -Wno-deprecated-declarations' ./configure && make

The memcached binary will be located in the memcached-sr directory.

Further instructions

TC egress hook

BMC doesn't attach the tx_filter eBPF program to the egress hook of TC, it needs to be attached manually.

To do so, you first need to make sure that the BPF is mounted, if it isn't you can mount it with the following command:

# mount -t bpf none /sys/fs/bpf/

Once BMC is running and the tx_filter program has been pinned to /sys/fs/bpf/bmc_tx_filter, you can attach it using the tc command line:

# tc qdisc add dev 
   
     clsact
   
# tc filter add dev 
   
     egress bpf object-pinned /sys/fs/bpf/bmc_tx_filter
   

After you are done using BMC, you can detach the program with these commands:

# tc filter del dev 
   
     egress
   
# tc qdisc del dev 
   
     clsact
   

And unpin the program with # rm /sys/fs/bpf/bmc_tx_filter

License

Files under the bmc directory are licensed under the GNU Lesser General Public License version 2.1.

Files under the memcached-sr directory are licensed under the BSD-3-Clause BSD license.

Cite this work

BibTex:

@inproceedings{265047,
	title        = {{BMC}: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing},
	author       = {Yoann Ghigoff and Julien Sopena and Kahina Lazri and Antoine Blin and Gilles Muller},
	year         = 2021,
	month        = apr,
	booktitle    = {18th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 21)},
	publisher    = {{USENIX} Association},
	pages        = {487--501},
	isbn         = {978-1-939133-21-2},
	url          = {https://www.usenix.org/conference/nsdi21/presentation/ghigoff}
}
Owner
Orange
Open Source by Orange
Orange
[CVPR'21] Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration

Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration This repository contains the implementation of our paper Locally Aware Pi

sfwang 70 Dec 19, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

Tom 50 Dec 16, 2022
Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, and finding their unique parameters (e.g. death rate).

DINN We introduce Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, a

19 Dec 10, 2022
AAAI 2022 paper - Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction

AT-BMC Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction (AAAI 2022) Paper Prerequisites Install pac

16 Nov 26, 2022
ReGAN: Sequence GAN using RE[INFORCE|LAX|BAR] based PG estimators

Sequence Generation with GANs trained by Gradient Estimation Requirements: PyTorch v0.3 Python 3.6 CUDA 9.1 (For GPU) Origin The idea is from paper Se

40 Nov 03, 2022
An open source machine learning library for performing regression tasks using RVM technique.

Introduction neonrvm is an open source machine learning library for performing regression tasks using RVM technique. It is written in C programming la

Siavash Eliasi 33 May 31, 2022
The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding"

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
It is an open dataset for object detection in remote sensing images.

RSOD-Dataset It is an open dataset for object detection in remote sensing images. The dataset includes aircraft, oiltank, playground and overpass. The

136 Dec 08, 2022
Official PyTorch code of DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization (ICCV 2021 Oral).

DeepPanoContext (DPC) [Project Page (with interactive results)][Paper] DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context G

Cheng Zhang 66 Nov 16, 2022
A minimal implementation of face-detection models using flask, gunicorn, nginx, docker, and docker-compose

Face-Detection-flask-gunicorn-nginx-docker This is a simple implementation of dockerized face-detection restful-API implemented with flask, Nginx, and

Pooya-Mohammadi 30 Dec 17, 2022
Data, model training, and evaluation code for "PubTables-1M: Towards a universal dataset and metrics for training and evaluating table extraction models".

PubTables-1M This repository contains training and evaluation code for the paper "PubTables-1M: Towards a universal dataset and metrics for training a

Microsoft 365 Jan 04, 2023
Doge-Prediction - Coding Club prediction ig

Doge-Prediction Coding Club prediction ig Basically: Create an application that

1 Jan 10, 2022
Image Fusion Transformer

Image-Fusion-Transformer Platform Python 3.7 Pytorch =1.0 Training Dataset MS-COCO 2014 (T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ram

Vibashan VS 68 Dec 23, 2022
Official implementation of Long-Short Transformer in PyTorch.

Long-Short Transformer (Transformer-LS) This repository hosts the code and models for the paper: Long-Short Transformer: Efficient Transformers for La

NVIDIA Corporation 198 Dec 29, 2022
Good Semi-Supervised Learning That Requires a Bad GAN

Good Semi-Supervised Learning that Requires a Bad GAN This is the code we used in our paper Good Semi-supervised Learning that Requires a Bad GAN Ziha

Zhilin Yang 177 Dec 12, 2022
COLMAP - Structure-from-Motion and Multi-View Stereo

COLMAP About COLMAP is a general-purpose Structure-from-Motion (SfM) and Multi-View Stereo (MVS) pipeline with a graphical and command-line interface.

4.7k Jan 07, 2023
Using contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations

The official code for the paper "Inverse Problems Leveraging Pre-trained Contrastive Representations" (to appear in NeurIPS 2021).

Sriram Ravula 26 Dec 10, 2022
Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES)

Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES) This repo contains the full NITRATES pipeline for maximum likelihood-driven discov

13 Nov 08, 2022
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l

Distributed (Deep) Machine Learning Community 23.6k Dec 31, 2022
A set of tools for Namebase and HNS

HNS-TOOLS A set of tools for Namebase and HNS To install: pip install -r requirements.txt To run: py main.py My Namebase referral code: http://namebas

RunDavidMC 7 Apr 08, 2022