WHENet - ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L

Overview

HeadPoseEstimation-WHENet-yolov4-onnx-openvino

ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L

ezgif com-gif-maker (3)

1. Usage

$ git clone https://github.com/PINTO0309/HeadPoseEstimation-WHENet-yolov4-onnx-openvino
$ cd HeadPoseEstimation-WHENet-yolov4-onnx-openvino
$ wget https://github.com/PINTO0309/HeadPoseEstimation-WHENet-yolov4-onnx-openvino/releases/download/v1.0.0/saved_model_224x224.tar.gz
$ tar -zxvf saved_model_224x224.tar.gz && rm saved_model_224x224.tar.gz

$ python3 demo_video.py
usage: demo_video.py \
[-h] \
[--whenet_mode {onnx,openvino}] \
[--device DEVICE] \
[--height_width HEIGHT_WIDTH]

optional arguments:
  -h, --help
      show this help message and exit
  --whenet_mode {onnx,openvino}
      Choose whether to infer WHENet with ONNX or OpenVINO. Default: onnx
  --device DEVICE
      Path of the mp4 file or device number of the USB camera. Default: 0
  --height_width HEIGHT_WIDTH
      {H}x{W} Default: 480x640

2. Reference

  1. https://github.com/Ascend-Research/HeadPoseEstimation-WHENet
  2. https://github.com/AlexeyAB/darknet
  3. https://github.com/linghu8812/tensorrt_inference
  4. https://github.com/jkjung-avt/yolov4_crowdhuman
  5. https://github.com/PINTO0309/PINTO_model_zoo
  6. https://github.com/PINTO0309/openvino2tensorflow
  7. https://zenn.dev/pinto0309/scraps/1849b6909db13b
You might also like...
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | 中文 Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron
Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

 WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose
WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose

WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose Yijun Zhou and James Gregson - BMVC2020 Abstract: We present an end-to-end head-pos

Export CenterPoint PonintPillars ONNX Model For TensorRT
Export CenterPoint PonintPillars ONNX Model For TensorRT

CenterPoint-PonintPillars Pytroch model convert to ONNX and TensorRT Welcome to CenterPoint! This project is fork from tianweiy/CenterPoint. I impleme

This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.

PyTorch Infer Utils This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model infer

YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet )
YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet )

Yolo v4, v3 and v2 for Windows and Linux (neural networks for object detection) Paper YOLO v4: https://arxiv.org/abs/2004.10934 Paper Scaled YOLO v4:

Human Pose Detection on EdgeTPU
Human Pose Detection on EdgeTPU

Coral PoseNet Pose estimation refers to computer vision techniques that detect human figures in images and video, so that one could determine, for exa

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runtime Web.

Comments
  • yaw will output nan or inf after some infers with trt model

    yaw will output nan or inf after some infers with trt model

    Hello ,Sir,

    I have tested, the input of network has no problem. With one single image, this trt model infers with different results of yaw angle on different batches, while the roll and pitch keep the same. When this model infers on webcam, the first almost ten batches are fully ok, but after that, the yaw results turn out inf or nan, while the roll and pitch also are ok.

    This question might be somewhat too specific, I would appreciate a lot if you can give me some hints about this.

    Thank you!

    opened by thunder95 2
  • invalid dimensions

    invalid dimensions

    I tried to transform keras model to onnx, and this is my code,

    onnx_model = keras2onnx.convert_keras(self.model, self.model.name)
    temp_model_file = './mymodel.onnx'
    onnx.save_model(onnx_model, temp_model_file)
    

    However, when I tried to run my onnx model, I got a crash and error code is like this,

    onnxruntime.capi.onnxruntime_pybind11_state.InvalidArgument: [ONNXRuntimeError] : 2 : INVALID_ARGUMENT : Got invalid dimensions for input: input_1 for the following indices
     index: 1 Got: 3 Expected: 224
     index: 3 Got: 224 Expected: 3
     Please fix either the inputs or the model.
    

    I also noticed your onnx model runs successfully, coud you please tell me how do you solve this problem?

    opened by liyewu 2
Releases(v1.0.4)
Owner
Katsuya Hyodo
Hobby programmer. Intel Software Innovator Program member.
Katsuya Hyodo
Code for "Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans" CVPR 2021 best paper candidate

News 05/17/2021 To make the comparison on ZJU-MoCap easier, we save quantitative and qualitative results of other methods at here, including Neural Vo

ZJU3DV 748 Jan 07, 2023
Rank1 Conversation Emotion Detection Task

Rank1-Conversation_Emotion_Detection_Task accuracy macro-f1 recall 0.826 0.7544 0.719 基于预训练模型和时序预测模型的对话情感探测任务 1 摘要 针对对话情感探测任务,本文将其分为文本分类和时间序列预测两个子任务,分

Yuchen Han 2 Nov 28, 2021
Image Captioning on google cloud platform based on iot

Image-Captioning-on-google-cloud-platform-based-on-iot - Image Captioning on google cloud platform based on iot

Shweta_kumawat 1 Jan 20, 2022
A different spin on dataclasses.

dataklasses Dataklasses is a library that allows you to quickly define data classes using Python type hints. Here's an example of how you use it: from

David Beazley 752 Nov 18, 2022
The official MegEngine implementation of the ICCV 2021 paper: GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning

[ICCV 2021] GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning This is the official implementation of our ICCV2021 paper GyroFlow. Our pres

MEGVII Research 36 Sep 07, 2022
Data visualization app for H&M competition in kaggle

handm_data_visualize_app Data visualization app by streamlit for H&M competition in kaggle. competition page: https://www.kaggle.com/competitions/h-an

Kyohei Uto 12 Apr 30, 2022
wmctrl ported to Python Ctypes

work in progress wmctrl is a command that can be used to interact with an X Window manager that is compatible with the EWMH/NetWM specification. wmctr

Iyad Ahmed 22 Dec 31, 2022
Neural network graphs and training metrics for PyTorch, Tensorflow, and Keras.

HiddenLayer A lightweight library for neural network graphs and training metrics for PyTorch, Tensorflow, and Keras. HiddenLayer is simple, easy to ex

Waleed 1.7k Dec 31, 2022
Forecasting with Gradient Boosted Time Series Decomposition

ThymeBoost ThymeBoost combines time series decomposition with gradient boosting to provide a flexible mix-and-match time series framework for spicy fo

131 Jan 08, 2023
Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture

MS-SVConv : 3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning Compute features for 3D point cloud registration

42 Jul 25, 2022
Automatic Image Background Subtraction

Automatic Image Background Subtraction This repo contains set of scripts for automatic one-shot image background subtraction task using the following

Oleg Sémery 6 Dec 05, 2022
Easily Process a Batch of Cox Models

ezcox: Easily Process a Batch of Cox Models The goal of ezcox is to operate a batch of univariate or multivariate Cox models and return tidy result. ⏬

Shixiang Wang 15 May 23, 2022
YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet )

Yolo v4, v3 and v2 for Windows and Linux (neural networks for object detection) Paper YOLO v4: https://arxiv.org/abs/2004.10934 Paper Scaled YOLO v4:

Alexey 20.2k Jan 09, 2023
Automatically download the cwru data set, and then divide it into training data set and test data set

Automatically download the cwru data set, and then divide it into training data set and test data set.自动下载cwru数据集,然后分训练数据集和测试数据集

6 Jun 27, 2022
Alphabetical Letter Recognition

BayeesNetworks-Image-Classification Alphabetical Letter Recognition In these demo we are using "Bayees Networks" Our database is composed by Learning

Mohammed Firass 4 Nov 30, 2021
Unsupervised Image Generation with Infinite Generative Adversarial Networks

Unsupervised Image Generation with Infinite Generative Adversarial Networks Here is the implementation of MICGANs using DCGAN architecture on MNIST da

16 Dec 24, 2021
Text to image synthesis using thought vectors

Text To Image Synthesis Using Thought Vectors This is an experimental tensorflow implementation of synthesizing images from captions using Skip Though

Paarth Neekhara 2.1k Jan 05, 2023
Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning

tf-fsvd TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions Cite If you f

Sami Abu-El-Haija 14 Nov 25, 2021
Official implementation of SIGIR'2021 paper: "Sequential Recommendation with Graph Neural Networks".

SURGE: Sequential Recommendation with Graph Neural Networks This is our TensorFlow implementation for the paper: Sequential Recommendation with Graph

FIB LAB, Tsinghua University 53 Dec 26, 2022
Few-shot Learning of GPT-3

Few-shot Learning With Language Models This is a codebase to perform few-shot "in-context" learning using language models similar to the GPT-3 paper.

Tony Z. Zhao 224 Dec 28, 2022