MarcoPolo is a clustering-free approach to the exploration of bimodally expressed genes along with group information in single-cell RNA-seq data

Overview

MarcoPolo

MarcoPolo is a method to discover differentially expressed genes in single-cell RNA-seq data without depending on prior clustering

Overview

MarcoPolo is a novel clustering-independent approach to identifying DEGs in scRNA-seq data. MarcoPolo identifies informative DEGs without depending on prior clustering, and therefore is robust to uncertainties from clustering or cell type assignment. Since DEGs are identified independent of clustering, one can utilize them to detect subtypes of a cell population that are not detected by the standard clustering, or one can utilize them to augment HVG methods to improve clustering. An advantage of our method is that it automatically learns which cells are expressed and which are not by fitting the bimodal distribution. Additionally, our framework provides analysis results in the form of an HTML file so that researchers can conveniently visualize and interpret the results.

Datasets URL
Human liver cells (MacParland et al.) https://chanwkimlab.github.io/MarcoPolo/HumanLiver/
Human embryonic stem cells (The Koh et al.) https://chanwkimlab.github.io/MarcoPolo/hESC/
Peripheral blood mononuclear cells (Zheng et al.) https://chanwkimlab.github.io/MarcoPolo/Zhengmix8eq/

Installation

Currently, MarcoPolo was tested only on Linux machines. Dependencies are as follows:

  • python (3.7)
    • numpy (1.19.5)
    • pandas (1.2.1)
    • scipy (1.6.0)
    • scikit-learn (0.24.1)
    • pytorch (1.4.0)
    • rpy2 (3.4.2)
    • jinja2 (2.11.2)
  • R (4.0.3)
    • Seurat (3.2.1)
    • scran (1.18.3)
    • Matrix (1.3.2)
    • SingleCellExperiment (1.12.0)

Download MarcoPolo by git clone

git clone https://github.com/chanwkimlab/MarcoPolo.git

We recommend using the following pipeline to install the dependencies.

  1. Install Anaconda Please refer to https://docs.anaconda.com/anaconda/install/linux/ make conda environment and activate it
conda create -n MarcoPolo python=3.7
conda activate MarcoPolo
  1. Install Python packages
pip install numpy=1.19.5 pandas=1.21 scipy=1.6.0 scikit-learn=0.24.1 jinja2==2.11.2 rpy2=3.4.2

Also, please install PyTorch from https://pytorch.org/ (If you want to install CUDA-supported PyTorch, please install CUDA in advance)

  1. Install R and required packages
conda install -c conda-forge r-base=4.0.3

In R, run the following commands to install packages.

install.packages("devtools")
devtools::install_version(package = 'Seurat', version = package_version('3.2.1'))
install.packages("Matrix")
install.packages("BiocManager")
BiocManager::install("scran")
BiocManager::install("SingleCellExperiment")

Getting started

  1. Converting scRNA-seq dataset you have to python-compatible file format.

If you have a Seurat object seurat_object, you can save it to a Python-readable file format using the following R codes. An example output by the function is in the example directory with the prefix sample_data. The data has 1,000 cells and 1,500 genes in it.

save_sce <- function(sce,path,lowdim='TSNE'){
    
    sizeFactors(sce) <- calculateSumFactors(sce)
    
    save_data <- Matrix(as.matrix(assay(sce,'counts')),sparse=TRUE)
    
    writeMM(save_data,sprintf("%s.data.counts.mm",path))
    write.table(as.matrix(rownames(save_data)),sprintf('%s.data.row',path),row.names=FALSE, col.names=FALSE)
    write.table(as.matrix(colnames(save_data)),sprintf('%s.data.col',path),row.names=FALSE, col.names=FALSE)
    
    tsne_data <- reducedDim(sce, lowdim)
    colnames(tsne_data) <- c(sprintf('%s_1',lowdim),sprintf('%s_2',lowdim))
    print(head(cbind(as.matrix(colData(sce)),tsne_data)))
    write.table(cbind(as.matrix(colData(sce)),tsne_data),sprintf('%s.metadatacol.tsv',path),row.names=TRUE, col.names=TRUE,sep='\t')    
    write.table(cbind(as.matrix(rowData(sce))),sprintf('%s.metadatarow.tsv',path),row.names=TRUE, col.names=TRUE,sep='\t')    
    
    write.table(sizeFactors(sce),file=sprintf('%s.size_factor.tsv',path),sep='\t',row.names=FALSE, col.names=FALSE)    

}

sce_object <- as.SingleCellExperiment(seurat_object)
save_sce(sce_object, 'example/sample_data')
  1. Running MarcoPolo

Please use the same path argument you used for running the save_sce function above. You can incorporate covariate - denoted as ß in the paper - in modeling the read counts by setting the Covar parameter.

import MarcoPolo.QQscore as QQ
import MarcoPolo.summarizer as summarizer

path='scRNAdata'
QQ.save_QQscore(path=path,device='cuda:0')
allscore=summarizer.save_MarcoPolo(input_path=path,
                                   output_path=path)
  1. Generating MarcoPolo HTML report
import MarcoPolo.report as report
report.generate_report(input_path="scRNAdata",output_path="report/hESC",top_num_table=1000,top_num_figure=1000)
  • Note
    • User can specify the number of genes to include in the report file by setting the top_num_table and top_num_figure parameters.
    • If there are any two genes with the same MarcoPolo score, a gene with a larger fold change value is prioritized.

The function outputs the two files:

  • report/hESC/index.html (MarcoPolo HTML report)
  • report/hESC/voting.html (For each gene, this file shows the top 10 genes of which on/off information is similar to the gene.)

To-dos

  • supporting AnnData object, which is used by scanpy by default.
  • building colab running environment

Citation

If you use any part of this code or our data, please cite our paper.

@article{kim2022marcopolo,
  title={MarcoPolo: a method to discover differentially expressed genes in single-cell RNA-seq data without depending on prior clustering},
  author={Kim, Chanwoo and Lee, Hanbin and Jeong, Juhee and Jung, Keehoon and Han, Buhm},
  journal={Nucleic Acids Research},
  year={2022}
}

Contact

If you have any inquiries, please feel free to contact

  • Chanwoo Kim (Paul G. Allen School of Computer Science & Engineering @ the University of Washington)
Owner
Chanwoo Kim
Ph.D. student in Computer Science at the University of Washington
Chanwoo Kim
Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis

Hierarchical Attention Mining (HAM) for weakly-supervised abnormality localization This is the official PyTorch implementation for the HAM method. Pap

Xi Ouyang 22 Jan 02, 2023
This is a five-step framework for the development of intrusion detection systems (IDS) using machine learning (ML) considering model realization, and performance evaluation.

AB-TRAP: building invisibility shields to protect network devices The AB-TRAP framework is applicable to the development of Network Intrusion Detectio

Lab-C2DC - Laboratory of Command and Control and Cyber-security 17 Jan 04, 2023
LibMTL: A PyTorch Library for Multi-Task Learning

LibMTL LibMTL is an open-source library built on PyTorch for Multi-Task Learning (MTL). See the latest documentation for detailed introductions and AP

765 Jan 06, 2023
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models

Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models, under review at ICLR 2017 requirements: T

Shuangfei Zhai 18 Mar 05, 2022
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Official code of Retinal Vessel Segmentation with Pixel-wise Adaptive Filters and Consistency Training (ISBI 2022)

anonymous 14 Oct 27, 2022
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023
Training PSPNet in Tensorflow. Reproduce the performance from the paper.

Training Reproduce of PSPNet. (Updated 2021/04/09. Authors of PSPNet have provided a Pytorch implementation for PSPNet and their new work with support

Li Xuhong 126 Jul 13, 2022
LIVECell - A large-scale dataset for label-free live cell segmentation

LIVECell dataset This document contains instructions of how to access the data associated with the submitted manuscript "LIVECell - A large-scale data

Sartorius Corporate Research 112 Jan 07, 2023
This repository contains code to train and render Mixture of Volumetric Primitives (MVP) models

Mixture of Volumetric Primitives -- Training and Evaluation This repository contains code to train and render Mixture of Volumetric Primitives (MVP) m

Meta Research 125 Dec 29, 2022
Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021

NPMs: Neural Parametric Models Project Page | Paper | ArXiv | Video NPMs: Neural Parametric Models for 3D Deformable Shapes Pablo Palafox, Aljaz Bozic

PabloPalafox 109 Nov 22, 2022
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
Code for the Higgs Boson Machine Learning Challenge organised by CERN & EPFL

A method to solve the Higgs boson challenge using Least Squares - Novae This project is the Project 1 of EPFL CS-433 Machine Learning. The project is

Giacomo Orsi 1 Nov 09, 2021
Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models

Patch-Rotation(PatchRot) Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models Submitted to Neurips2021 To

4 Jul 12, 2021
System Combination for Grammatical Error Correction Based on Integer Programming

System Combination for Grammatical Error Correction Based on Integer Programming This repository contains the code and scripts that implement the syst

NUS NLP Group 0 Mar 29, 2022
A new data augmentation method for extreme lighting conditions.

Random Shadows and Highlights This repo has the source code for the paper: Random Shadows and Highlights: A new data augmentation method for extreme l

Osama Mazhar 35 Nov 26, 2022
Experiments and examples converting Transformers to ONNX

Experiments and examples converting Transformers to ONNX This repository containes experiments and examples on converting different Transformers to ON

Philipp Schmid 4 Dec 24, 2022
[ICCV21] Code for RetrievalFuse: Neural 3D Scene Reconstruction with a Database

RetrievalFuse Paper | Project Page | Video RetrievalFuse: Neural 3D Scene Reconstruction with a Database Yawar Siddiqui, Justus Thies, Fangchang Ma, Q

Yawar Nihal Siddiqui 75 Dec 22, 2022
This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision"

RUAS This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision" A prelimin

Vision & Optimization Group (VOG) 2 May 05, 2022
Simple ONNX operation generator. Simple Operation Generator for ONNX.

sog4onnx Simple ONNX operation generator. Simple Operation Generator for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools Key concept V

Katsuya Hyodo 6 May 15, 2022
Software that can generate photos from paintings, turn horses into zebras, perform style transfer, and more.

CycleGAN PyTorch | project page | paper Torch implementation for learning an image-to-image translation (i.e. pix2pix) without input-output pairs, for

Jun-Yan Zhu 11.5k Dec 30, 2022