This is the code of paper ``Contrastive Coding for Active Learning under Class Distribution Mismatch'' with python.

Related tags

Deep LearningCCAL
Overview

Contrastive Coding for Active Learning under Class Distribution Mismatch

Official PyTorch implementation of ["Contrastive Coding for Active Learning under Class Distribution Mismatch"]( ICCV2021)

1. Requirements

Environments

Currently, requires following packages.

  • CUDA 10.1+
  • python == 3.7.9
  • pytorch == 1.7.1
  • torchvision == 0.8.2
  • scikit-learn == 0.24.0
  • tensorboardx == 2.1
  • matplotlib == 3.3.3
  • numpy == 1.19.2
  • scipy == 1.5.3
  • apex == 0.1
  • diffdist == 0.1
  • pytorch-gradual-warmup-lr packages

Datasets

For CIFAR10 and CIFAR100, we provide a function to automatically download and preprocess the data, you can also download the datasets from the link, and please download it to ~/data.

2. Training

Currently, all code examples are assuming distributed launch with 4 multi GPUs. To run the code with single GPU, remove -m torch.distributed.launch --nproc_per_node=4.

Semantic feature extraction

To train semantic feature extraction in the paper, run this command:

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 contrast_main.py --mismatch 0.8 --dataset <DATASET> --model <NETWORK> --mode senmatic --shift_trans_type none --batch_size 32 --epoch <EPOCH> --logdir './model/semantic'
  • Option
  • For CIFAR10, set --datatset cifar10, else set --datatset cifar100.
  • In our experiment, we set --epoch 700 in cfar10 and --epoch 2000 in cifar100 .
  • And we set mismatch = 0.2, 0.4, 0.6, 0.8.

Distinctive feature extraction

To train distinctive feature extraction in the paper, run this command:

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 contrast_main.py --mismatch 0.8 --dataset <DATASET> --model <NETWORK> --mode feature --shift_trans_type rotation --batch_size 32 --epoch 700 --logdir './model/distinctive'
  • Option
  • For CIFAR10, set --datatset cifar10, else set --datatset cifar100.
  • In our experiment, we set --epoch 700 in cifar10 and cifar100 .
  • And we set mismatch = 0.2, 0.4, 0.6, 0.8.

Joint query strategy

To select samples from unlabeled dataset in the paper, run this command:

CUDA_VISIBLE_DEVICES=0 python active_main.py --mode eval --k 100.0 --t 0.9 --dataset <DATASET> --model <NETWORK> --mismatch <MISMATCH> --target <INT> --shift_trans_type rotation --print_score --ood_samples 10 --resize_factor 0.54 --resize_fix --load_feature_path './model/distinctive/last.model' --load_senmatic_path './model/semantic/last.model'  --load_path './model'
  • Option
  • For CIFAR10, set --datatset cifar10, else set --datatset cifar100.
  • The value of mismatch is between 0 and 1. In our experiment, we set mismatch = 0.2, 0.4, 0.6, 0.8.
  • --target represents the number of queried samples in each category in each AL cycle.

Then, we can get the index of the samples be queried in each active learning cycle. Take mismatch=0.8 for example,the index of the samples should be added in to CCAL_master/train_classifier/get_index_80.

3. Evaluation

To evaluate the proformance of CCAL, we provide a script to train a classifier, as shown in CCAL_master/train_classifier. , run this command to train the classifier:

CUDA_VISIBLE_DEVICES=0 python main.py --cuda --split <CYCLES> --dataset <DATASET> --mismatch <MISMATCH> --number <NUMBER> --epoch 100
  • Option
  • For CIFAR10, set --datatset cifar10, else set --datatset cifar100.
  • The value of mismatch is between 0 and 1. In our experiment, we set mismatch = 0.2, 0.4, 0.6, 0.8. The value of mismatch should be the same as before.
  • --number indicates the cycle of active learning.
  • --epoch indicates the epochs that training continues in each active learning cycle. In our experiment, we set --epoch 100.
  • --split represents the cycles of active learning.

Then, we can get the average of the accuracies over 5 runs(random seed = 0,1,2,3,4,5).

4. Citation

@InProceedings{Du_2021_ICCV,
    author    = {Du, Pan and Zhao, Suyun and Chen, Hui and Chai, Shuwen and Chen, Hong and Li, Cuiping},
    title     = {Contrastive Coding for Active Learning Under Class Distribution Mismatch},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {8927-8936}
}

5. Reference

@inproceedings{tack2020csi,
  title={CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances},
  author={Jihoon Tack and Sangwoo Mo and Jongheon Jeong and Jinwoo Shin},
  booktitle={Advances in Neural Information Processing Systems},
  year={2020}
}
[NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning

SoCo [NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning By Fangyun Wei*, Yue Gao*, Zhirong Wu, Han Hu,

Yue Gao 139 Dec 14, 2022
GraphGT: Machine Learning Datasets for Graph Generation and Transformation

GraphGT: Machine Learning Datasets for Graph Generation and Transformation Dataset Website | Paper Installation Using pip To install the core environm

y6q9 50 Aug 18, 2022
YKKDetector For Python

YKKDetector OpenCVを利用した機械学習データをもとに、VRChatのスクリーンショットなどからYKKさん(もとい「幽狐族のお姉様」)を検出できるソフトウェアです。 マニュアル こちらから実行環境のセットアップから解説する詳細なマニュアルをご覧いただけます。 ライセンス 本ソフトウェア

あんふぃとらいと 5 Dec 07, 2021
Custom studies about block sparse attention.

Block Sparse Attention 研究总结 本人近半年来对Block Sparse Attention(块稀疏注意力)的研究总结(持续更新中)。按时间顺序,主要分为如下三部分: PyTorch 自定义 CUDA 算子——以矩阵乘法为例 基于 Triton 的 Block Sparse A

Chen Kai 2 Jan 09, 2022
Res2Net for Instance segmentation and Object detection using MaskRCNN

Res2Net for Instance segmentation and Object detection using MaskRCNN Since the MaskRCNN-benchmark of facebook is deprecated, we suggest to use our mm

Res2Net Applications 55 Oct 30, 2022
[CVPR 2021] Official PyTorch Implementation for "Iterative Filter Adaptive Network for Single Image Defocus Deblurring"

IFAN: Iterative Filter Adaptive Network for Single Image Defocus Deblurring Checkout for the demo (GUI/Google Colab)! The GUI version might occasional

Junyong Lee 173 Dec 30, 2022
Implement A3C for Mujoco gym envs

pytorch-a3c-mujoco Disclaimer: my implementation right now is unstable (you ca refer to the learning curve below), I'm not sure if it's my problems. A

Andrew 70 Dec 12, 2022
Dual Attention Network for Scene Segmentation (CVPR2019)

Dual Attention Network for Scene Segmentation(CVPR2019) Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang,and Hanqing Lu Introduction W

Jun Fu 2.2k Dec 28, 2022
NeurIPS 2021 Datasets and Benchmarks Track

AP-10K: A Benchmark for Animal Pose Estimation in the Wild Introduction | Updates | Overview | Download | Training Code | Key Questions | License Intr

AP-10K 82 Dec 11, 2022
A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS).

UniNAS A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS). under development (which happens mostly on our internal Gi

Cognitive Systems Research Group 19 Nov 23, 2022
Türkiye Canlı Mobese Görüntülerinde Profesyonel Nesne Takip Sistemi

Türkiye Mobese Görüntü Takip Türkiye Mobese görüntülerinde OPENCV ve Yolo ile takip sistemi Multiple Object Tracking System in Turkish Mobese with OPE

15 Dec 22, 2022
Open source annotation tool for machine learning practitioners.

doccano doccano is an open source text annotation tool for humans. It provides annotation features for text classification, sequence labeling and sequ

7.1k Jan 01, 2023
Byzantine-robust decentralized learning via self-centered clipping

Byzantine-robust decentralized learning via self-centered clipping In this paper, we study the challenging task of Byzantine-robust decentralized trai

EPFL Machine Learning and Optimization Laboratory 4 Aug 27, 2022
Package for extracting emotions from social media text. Tailored for financial data.

EmTract: Extracting Emotions from Social Media Text Tailored for Financial Contexts EmTract is a tool that extracts emotions from social media text. I

13 Nov 17, 2022
Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Duong H. Le 18 Jun 13, 2022
Codes for AAAI22 paper "Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum"

Paper For more details, please see our paper Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum which has been accepted a

14 Sep 30, 2022
Pytorch0.4.1 codes for InsightFace

InsightFace_Pytorch Pytorch0.4.1 codes for InsightFace 1. Intro This repo is a reimplementation of Arcface(paper), or Insightface(github) For models,

1.5k Jan 01, 2023
Extracting and filtering paraphrases by bridging natural language inference and paraphrasing

nli2paraphrases Source code repository accompanying the preprint Extracting and filtering paraphrases by bridging natural language inference and parap

Matej Klemen 1 Mar 09, 2022
Pytorch implementation of the paper SPICE: Semantic Pseudo-labeling for Image Clustering

SPICE: Semantic Pseudo-labeling for Image Clustering By Chuang Niu and Ge Wang This is a Pytorch implementation of the paper. (In updating) SOTA on 5

Chuang Niu 154 Dec 15, 2022
ESL: Event-based Structured Light

ESL: Event-based Structured Light Video (click on the image) This is the code for the 2021 3DV paper ESL: Event-based Structured Light by Manasi Mugli

Robotics and Perception Group 29 Oct 24, 2022