An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" in Pytorch.

Related tags

Deep LearningGLOM
Overview

GLOM

An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" for MNIST Dataset. To understand this implementation, please watch Yannick Kilcher's GLOM video, then read this README.md, then read the code.

Running

Open in jupyter notebook to run. Program expects an Nvidia graphics card for gpu speedup. If you run out of gpu memory, decrease the batch_size variable. If you want to look at the code on github and it fails, try reloading or refreshing several times.

Results

The best models, which have been posted under the best_models folder, reached an accuracy of about 91%.

Implementation details

Three Types of networks per layer of vectors

  1. Top-Down Network
  2. Bottom-up Network
  3. Attention on the same layer Network

Intro to State

There is an initial state that all three types of network outputs get added to after every time step. The bottom layer of the state is the input vector where the MNIST pixel data is kept and doesn't get anything added to it to retain the MNIST pixel data. The top layer of the state is the output layer where the loss function is applied and trained to be the one-hot MNIST target vector.

Explanation of compute_all function

Each type of network will see a 3x3 grid of vectors surrounding the current network input vector at the current layer. This is done to allow information to travel faster laterally across vectors, allowing for more information to be sent across an image in less steps. The easy way to do this is to shift (or roll) every vector along the x and y axis and then concatenate the vectors ontop of eachother so that every place a vector used to be in the state, now contains every vector and its neighboring vectors in the same layer. This also connects the edges of the image so that data can be passed from one edge of the image to the other, reducing the maximum distance any two pixels or vectors can be from one another.

For a more complex dataset, its possible this could pose some issues since two separate edges of an image aren't generally continous, but for MNIST, this problem doesn't arise. Then, these vectors are fed to each type of model. The models will get an input of all neighboring state vectors for a certain layer for each pixel that is given. Each model will then output a single vector. But there are 3 types of models per layer. In this example, every line drawn is a new model that is reused for every pixel this process is done for. After each model type has given an output, the three lists of vectors are added together.

This will give a single list of vectors that will be added to the corresponding list of vectors at the specific x,y coordinate from the original state.

Repeating this step for every list of vectors per x,y coordinate in the original state will yield the full new State value.

Since each network only sees a 3x3 grid and not larger image patches, this technique can be used for any size images and is easily parrallelizable.

If I had more compute

My 2080Ti runs into memory errors running this if the batch size is above around 30, so here are my implementatin ideas if I had more compute.

  1. Increase batch_size. This probably wont affect the training, but it would make testing the accuracy faster.
  2. Saving more states throughout the steps taken and adding them together. This would allow for gradients to get passed back to the original state similar to how RESNET can train very large model since the gradients can get passed backwards easier. This has been implemented to a smaller degree already and showed massive accuracy improvements.
  3. Perform some kind of evolutionary parameter search by mutating the model parameters while also using backprop. This has been shown to improve the accuracy of image classifiers and other models. But this would take a ton of compute.

Yannic Kilcher's Attention

This hass been pushed to github because during testing and tuning hyperparameters, a better model than previous was found. More testing needs to be done and I'm working on the visual explanation for it now. Previous versions of this code don't have the attention seen in the current version and will have similar performance.

Other Ideas behind the paper implementation

This is basically a neural cellular automata from the paper Growing Neural Cellular Automata with some inspiration from the follow up paper Self-classifying MNIST Digits. Except instead of a single list of numbers (or one vector) per pixel, there are several vectors per pixel in each image. The Growing Neural Cellular Automata paper was very difficult to train also because the long gradient chains, so increasing the models complexity in this GLOM paper makes training even harder. But the neural cellular automata papers are the reason why the MSE loss function is used while also adding random noise to the state during training.

To do

  1. Generated the explanation for Yannick Kilcher's version of attention that is implemented here.
  2. See if part-whole heirarchies are being found.
  3. Keep testing hyperpatameters to push accuracy higher.
  4. Test different state initializations.
  5. Train on harder datasets.

If you find any issues, please feel free to contact me

Owner
Just a random coder
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l

Microsoft 244 Jan 06, 2023
Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research

Welcome to AirSim AirSim is a simulator for drones, cars and more, built on Unreal Engine (we now also have an experimental Unity release). It is open

Microsoft 13.8k Jan 05, 2023
Pixray is an image generation system

Pixray is an image generation system

pixray 883 Jan 07, 2023
Implementation of ICLR 2020 paper "Revisiting Self-Training for Neural Sequence Generation"

Self-Training for Neural Sequence Generation This repo includes instructions for running noisy self-training algorithms from the following paper: Revi

Junxian He 45 Dec 31, 2022
[2021][ICCV][FSNet] Full-Duplex Strategy for Video Object Segmentation

Full-Duplex Strategy for Video Object Segmentation (ICCV, 2021) Authors: Ge-Peng Ji, Keren Fu, Zhe Wu, Deng-Ping Fan*, Jianbing Shen, & Ling Shao This

Daniel-Ji 55 Dec 22, 2022
Scripts and outputs related to the paper Prediction of Adverse Biological Effects of Chemicals Using Knowledge Graph Embeddings.

Knowledge Graph Embeddings and Chemical Effect Prediction, 2020. Scripts and outputs related to the paper Prediction of Adverse Biological Effects of

Knowledge Graphs at the Norwegian Institute for Water Research 1 Nov 01, 2021
A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization components are included and optional.

Description A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization co

AoxiangFan 9 Nov 10, 2022
SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research

SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research

59 Feb 25, 2022
PyTorch Implementation of Vector Quantized Variational AutoEncoders.

Pytorch implementation of VQVAE. This paper combines 2 tricks: Vector Quantization (check out this amazing blog for better understanding.) Straight-Th

Vrushank Changawala 2 Oct 06, 2021
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

197 Jan 07, 2023
DEMix Layers for Modular Language Modeling

DEMix This repository contains modeling utilities for "DEMix Layers: Disentangling Domains for Modular Language Modeling" (Gururangan et. al, 2021). T

Suchin 43 Nov 11, 2022
A library for optimization on Riemannian manifolds

TensorFlow RiemOpt A library for manifold-constrained optimization in TensorFlow. Installation To install the latest development version from GitHub:

Oleg Smirnov 83 Dec 27, 2022
Style transfer between images was performed using the VGG19 model

Style transfer between images was performed using the VGG19 model. The necessary codes, libraries and all other information of this project are available below

Onur yılmaz 2 May 09, 2022
MetaBalance: High-Performance Neural Networks for Class-Imbalanced Data

This repository is the official PyTorch implementation of Meta-Balance. Find the paper on arxiv MetaBalance: High-Performance Neural Networks for Clas

Arpit Bansal 20 Oct 18, 2021
True per-item rarity for Loot

True-Rarity True per-item rarity for Loot (For Adventurers) and More Loot A.K.A mLoot each out/true_rarity_{item_type}.json file contains probabilitie

Dan R. 3 Jul 26, 2022
RobustART: Benchmarking Robustness on Architecture Design and Training Techniques

The first comprehensive Robustness investigation benchmark on large-scale dataset ImageNet regarding ARchitecture design and Training techniques towards diverse noises.

132 Dec 23, 2022
This folder contains the python code of UR5E's advanced forward kinematics model.

This folder contains the python code of UR5E's advanced forward kinematics model. By entering the angle of the joint of UR5e, the detailed coordinates of up to 48 points around the robot arm can be c

Qiang Wang 4 Sep 17, 2022
A data-driven maritime port simulator

PySeidon - A Data-Driven Maritime Port Simulator 🌊 Extendable and modular software for maritime port simulation. This software uses entity-component

6 Apr 10, 2022
Wordle-solver - Wordle answer generation program in python

🟨 Wordle Solver 🟩 Wordle answer generation program in python ✔️ Requirements U

Dahyun Kang 4 May 28, 2022
Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image

NonCuboidRoom Paper Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image Cheng Yang*, Jia Zheng*, Xili Dai, Rui Tang, Yi Ma, Xiao

67 Dec 15, 2022