Automatically creates genre collections for your Plex media

Overview

Plex Auto Genres

Plex Auto Genres is a simple script that will add genre collection tags to your media making it much easier to search for genre specific content

  1. Requirements
  2. Optimal Setup
  3. Getting Started
  4. Automating
  5. Docker Usage
  6. Troubleshooting
Movies example (with cover art set using --set-posters flag.)

Movie Collections

Anime example

Anime Collections

Requirements

  1. Python 3 - Instructions > Windows / Mac / Linux (Not required if using Docker)
  2. TMDB Api Key (Only required for non-anime libraries)

Optimal Setup

  1. Anime / Anime Movies are in their own library on your plex server. (Anime and Anime Movies can share the same library)
  2. Standard TV Shows are in their own library on your plex server.
  3. Standard Movies are in their own library on your plex server.
  4. Proper titles for your media, this makes it easier to find the media. (see https://support.plex.tv/articles/naming-and-organizing-your-tv-show-files/)

For this to work well your plex library should be sorted. Meaning standard and non-standard media should not be in the same Plex library. Anime is an example of non-standard media.

If your anime shows and standard tv shows are in the same library, you can still use this script just choose (standard) as the type. However, doing this could cause incorrect genres added to some or all of your anime media entries.

Here is an example of my plex library setup

Plex Library Example

Getting Started

  1. Read the Optimal Setup section above
  2. Run python3 -m pip install -r requirements.txt to install the required dependencies.
  3. Rename the .env.example file to .env
  4. Rename the config/config.json.example file to config/config.json. The default settings are probably fine.
  5. Edit the .env file and set your plex username, password, and server name. If you are generating collections for standard media (non anime) you will need to also obtain an TMDB Api Key (for movies and tv shows)
    Variable Authentication method Value
    PLEX_USERNAME Username and password Your Plex Username
    PLEX_PASSWORD Username and password Your Plex Password
    PLEX_SERVER_NAME Username and password Your Plex Server Name
    PLEX_BASE_URL Token Your Plex Server base URL
    PLEX_TOKEN Token Your Plex Token
    PLEX_COLLECTION_PREFIX (Optional) Prefix for the created Plex collections. For example, with a value of "*", a collection named "Adventure", the name would instead be "*Adventure".

    Default value : ""
    TMDB_API_KEY Your TMDB api key (not required for anime library tagging)
  6. Optional, If you want to update the poster art of your collections. See posters/README.md

You are now ready to run the script

usage: plex-auto-genres.py [-h] [--library LIBRARY] [--type {anime,standard-movie,standard-tv}] [--set-posters] [--sort] [--rate-anime]
                           [--create-rating-collections] [--query QUERY [QUERY ...]] [--dry] [--no-progress] [-f] [-y]

Adds genre tags (collections) to your Plex media.

optional arguments:
  -h, --help            show this help message and exit
  --library LIBRARY     The exact name of the Plex library to generate genre collections for.
  --type {anime,standard-movie,standard-tv}
                        The type of media contained in the library
  --set-posters         uploads posters located in posters/<type> of matching collections. Supports (.PNG)
  --sort                sort collections by adding the sort prefix character to the collection sort title
  --rate-anime          update media ratings with MyAnimeList ratings
  --create-rating-collections
                        sorts media into collections based off rating
  --query QUERY [QUERY ...]
                        Looks up genre and match info for the given media title.
  --dry                 Do not modify plex collections (debugging feature)
  --no-progress         Do not display the live updating progress bar
  -f, --force           Force proccess on all media (independently of proggress recorded in logs/).
  -y, --yes

examples: 
python plex-auto-genres.py --library "Anime Movies" --type anime
python plex-auto-genres.py --library "Anime Shows" --type anime
python plex-auto-genres.py --library Movies --type standard-movie
python plex-auto-genres.py --library "TV Shows" --type standard-tv

python plex-auto-genres.py --library Movies --type standard-movie --set-posters
python plex-auto-genres.py --library Movies --type standard-movie --sort
python plex-auto-genres.py --library Movies --type standard-movie --create-rating-collections

python plex-auto-genres.py --type anime --query chihayafuru
python plex-auto-genres.py --type standard-movie --query Thor Ragnarok

Example Usage

Automating

I have conveniently included a script to help with automating the process of running plex-auto-genres when combined with any number of cron scheduling tools such as crontab, windows task scheduler, etc.

If you have experience with Docker I reccommend using my docker image which will run on a schedule.

  1. Copy .env.example to .env and update the values
  2. Copy config.json.example to config.json and update the values
  3. Each entry in the run list will be executed when you run this script
  4. Have some cron/scheduling process execute python3 automate.py, I suggest running it manually first to test that its working.

Note: The first run of this script may take a long time (minutes to hours) depending on your library sizes.

Note: Don't be alarmed if you do not see any text output. The terminal output you normally see when running plex-auto-genres.py is redirected to the log file after each executed run in your config.

Docker Usage

  1. Install Docker
  2. Install Docker Compose
  3. Clone or Download this repository
  4. Edit docker/docker-compose.yml
    1. Update the volumes: paths to point to the config,logs,posters directories in this repo.
    2. Update the environment: variables. See Getting Started.
  5. Copy config/config.json.example to config/config.json
    1. Edit the run array examples to match your needs. When the script runs, each library entry in this array will be updated on your Plex server.
  6. Run docker-compose up -d, the script will run immediately then proceed to run on a schedule every night at 1am UTC. Logs will be located at logs/plex-auto-genres-automate.log

Another Docker option of this tool can be found here.

Troubleshooting

  1. If you are not seeing any new collections close your plex client and re-open it.
  2. Delete the generated plex-*-successful.txt and plex-*-failures.txt files if you want the script to generate collections from the beginning. You may want to do this if you delete your collections and need them re-created.
  3. Having the release year in the title of a tv show or movie can cause the lookup to fail in some instances. For example Battlestar Galactica (2003) will fail, but Battlestar Galactica will not.
Owner
Shane Israel
Shane Israel
Consecutive-Subsequence - Simple software to calculate susequence with highest sum

Simple software to calculate susequence with highest sum This repository contain

Gbadamosi Farouk 1 Jan 31, 2022
PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

pytorch-fcn PyTorch implementation of Fully Convolutional Networks. Requirements pytorch = 0.2.0 torchvision = 0.1.8 fcn = 6.1.5 Pillow scipy tqdm

Kentaro Wada 1.6k Jan 07, 2023
LIAO Shuiying 6 Dec 01, 2022
Multi-task Multi-agent Soft Actor Critic for SMAC

Multi-task Multi-agent Soft Actor Critic for SMAC Overview The CARE formulti-task: Multi-Task Reinforcement Learning with Context-based Representation

RuanJingqing 8 Sep 30, 2022
details on efforts to dump the Watermelon Games Paprium cart

Reminder, if you like these repos, fork them so they don't disappear https://github.com/ArcadeHustle/WatermelonPapriumDump/fork Big thanks to Fonzie f

Hustle Arcade 29 Dec 11, 2022
CoSMA: Convolutional Semi-Regular Mesh Autoencoder. From Paper "Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes"

Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes Implementation of CoSMA: Convolutional Semi-Regular Mesh Autoencoder arXiv p

Fraunhofer SCAI 10 Oct 11, 2022
[CVPR 2021] Teachers Do More Than Teach: Compressing Image-to-Image Models (CAT)

CAT arXiv Pytorch implementation of our method for compressing image-to-image models. Teachers Do More Than Teach: Compressing Image-to-Image Models Q

Snap Research 160 Dec 09, 2022
Exporter for Storage Area Network (SAN)

SAN Exporter Prometheus exporter for Storage Area Network (SAN). We all know that each SAN Storage vendor has their own glossary of terms, health/perf

vCloud 32 Dec 16, 2022
Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising

Deep-Rep-MFIR Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising Publication: Deep Reparametrization of M

Goutam Bhat 39 Jan 04, 2023
The repository for freeCodeCamp's YouTube course, Algorithmic Trading in Python

Algorithmic Trading in Python This repository Course Outline Section 1: Algorithmic Trading Fundamentals What is Algorithmic Trading? The Differences

Nick McCullum 1.8k Jan 02, 2023
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
ImageNet-CoG is a benchmark for concept generalization. It provides a full evaluation framework for pre-trained visual representations which measure how well they generalize to unseen concepts.

The ImageNet-CoG Benchmark Project Website Paper (arXiv) Code repository for the ImageNet-CoG Benchmark introduced in the paper "Concept Generalizatio

NAVER 23 Oct 09, 2022
Simple ray intersection library similar to coldet - succedeed by libacc

Ray Intersection This project offers a header only acceleration structure library including implementations for a BVH- and KD-Tree. Applications may i

Nils Moehrle 29 Jun 23, 2022
Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in Pytorch

Retrieval-Augmented Denoising Diffusion Probabilistic Models (wip) Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in P

Phil Wang 55 Jan 01, 2023
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes

FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes This repository contains the source code accompanying the paper: FlexConv: C

Robert-Jan Bruintjes 96 Dec 12, 2022
Finding all things on-prem Microsoft for password spraying and enumeration.

msprobe About Installing Usage Examples Coming Soon Acknowledgements About Finding all things on-prem Microsoft for password spraying and enumeration.

205 Jan 09, 2023
Attention-driven Robot Manipulation (ARM) which includes Q-attention

Attention-driven Robotic Manipulation (ARM) This codebase is home to: Q-attention: Enabling Efficient Learning for Vision-based Robotic Manipulation I

Stephen James 84 Dec 29, 2022
Build tensorflow keras model pipelines in a single line of code. Created by Ram Seshadri. Collaborators welcome. Permission granted upon request.

deep_autoviml Build keras pipelines and models in a single line of code! Table of Contents Motivation How it works Technology Install Usage API Image

AutoViz and Auto_ViML 102 Dec 17, 2022
This is the repo of the manuscript "Dual-branch Attention-In-Attention Transformer for speech enhancement"

DB-AIAT: A Dual-branch attention-in-attention transformer for single-channel SE

Guochen Yu 68 Dec 16, 2022