Automatically align face images 🙃→🙂. Can also do windowing and warping.

Overview

Automatic Face Alignment (AFA)

Carl M. Gaspar & Oliver G.B. Garrod

You have lots of photos of faces like this:

But you want to line up all of the faces like this:

Perhaps you would also like to window the faces to show only inner facial features like this:

All of the above can be done using AFA like this:

import alignfaces as afa

faces_path = "/Users/Me/faces_for_my_study/"
afa.get_landmarks(faces_path)
aligned_path = afa.align_procrustes(faces_path)
afa.get_landmarks(aligned_path)
the_aperture, aperture_path = afa.place_aperture(aligned_path)

To better understand how to write a script for your specific purposes, we direct you to demo 1. Demo 1 also describes how AFA alignment works.

All of these functions depend on reliable detection of facial landmarks, which is provided by the DLIB library. Alignment is based on generalized Procrustes analysis (GPA), which extensively unit tested.

Additional functions (warping)

Automatic landmark detection means that it is also easy to separate shape and texture in order to produce various kinds of warped images.

AFA provides functions for two types of face-warping manipulations common in face perception research.

Morphing between faces

To learn how to do this please see demo 2.

Enhanced average of facial identity

To learn how to do this please see demo 3.

Setup

It is highly recommended that you have conda installed, preferably miniconda rather than full fat anaconda.

If you do have conda, then do the following to install:

=3.9" scikit-image conda activate myenv pip install "alignfaces @ git+https://[email protected]/SourCherries/auto-face-align.git" ">
conda create --name myenv conda-forge::dlib "python>=3.9" scikit-image

conda activate myenv

pip install "alignfaces @ git+https://[email protected]/SourCherries/auto-face-align.git"

This will create a new virtual environment called myenv. You can use another name for that. You'll need to activate this environment using conda activate myenv whenever you want to use AFA. To deactivate, simply type conda deactivate myenv.

Windows users may encounter a problem with plotting. That is a general issue with Matplotlib on Windows. To fix, simply type the following while your myenv is activated:

conda install freetype=2.10.4

How well does this work?

In addition to unit-testing critical computations, I evaluated both landmark estimation (DLIB) and the outcome of the entire alignment procedure using various face databases. The results are described here.

Citation

If you use this package for your research, please cite the following preprint:

Gaspar, C. M., & Garrod, O. G. B. (2021, November 8). A Python toolbox for Automatic Face Alignment (AFA). Retrieved from psyarxiv.com/erc8a

DOI:

10.31234/osf.io/erc8a

License

This module is under an Apache-2.0 license.

Owner
Carl Michael Gaspar
Scientist focussed on human visual perception and neuroscience.
Carl Michael Gaspar
Learned model to estimate number of distinct values (NDV) of a population using a small sample.

Learned NDV estimator Learned model to estimate number of distinct values (NDV) of a population using a small sample. The model approximates the maxim

2 Nov 21, 2022
本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。

说明 本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。 python依赖 tf2.3 、cv2、numpy、pyqt5 pyqt5安装 pip install PyQt5 pip install PyQt5-tools 使用 程

4 May 04, 2022
DeepMind Alchemy task environment: a meta-reinforcement learning benchmark

The DeepMind Alchemy environment is a meta-reinforcement learning benchmark that presents tasks sampled from a task distribution with deep underlying structure.

DeepMind 188 Dec 25, 2022
Code and data for paper "Deep Photo Style Transfer"

deep-photo-styletransfer Code and data for paper "Deep Photo Style Transfer" Disclaimer This software is published for academic and non-commercial use

Fujun Luan 9.9k Dec 29, 2022
This repository provides a basic implementation of our GCPR 2021 paper "Learning Conditional Invariance through Cycle Consistency"

Learning Conditional Invariance through Cycle Consistency This repository provides a basic TensorFlow 1 implementation of the proposed model in our GC

BMDA - University of Basel 1 Nov 04, 2022
Parameter Efficient Deep Probabilistic Forecasting

PEDPF Parameter Efficient Deep Probabilistic Forecasting (PEDPF) is a repository containing code to run experiments for several deep learning based pr

Olivier Sprangers 10 Jun 13, 2022
Implementation for Curriculum DeepSDF

Curriculum-DeepSDF This repository is an implementation for Curriculum DeepSDF. Full paper is available here. Preparation Please follow original setti

Haidong Zhu 69 Dec 29, 2022
KoCLIP: Korean port of OpenAI CLIP, in Flax

KoCLIP This repository contains code for KoCLIP, a Korean port of OpenAI's CLIP. This project was conducted as part of Hugging Face's Flax/JAX communi

Jake Tae 100 Jan 02, 2023
Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization".

SAPE Project page Paper Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization". Environment Cre

36 Dec 09, 2022
Capsule endoscopy detection DACON challenge

capsule_endoscopy_detection (DACON Challenge) Overview Yolov5, Yolor, mmdetection기반의 모델을 사용 (총 11개 모델 앙상블) 모든 모델은 학습 시 Pretrained Weight을 yolov5, yolo

MAILAB 11 Nov 25, 2022
Simple implementation of Mobile-Former on Pytorch

Simple-implementation-of-Mobile-Former At present, only the model but no trained. There may be some bug in the code, and some details may be different

Acheung 103 Dec 31, 2022
In generative deep geometry learning, we often get many obj files remain to be rendered

a python prompt cli script for blender batch render In deep generative geometry learning, we always get many .obj files to be rendered. Our rendered i

Tian-yi Liang 1 Mar 20, 2022
Turning SymPy expressions into JAX functions

sympy2jax Turn SymPy expressions into parametrized, differentiable, vectorizable, JAX functions. All SymPy floats become trainable input parameters. S

Miles Cranmer 38 Dec 11, 2022
TextBPN Adaptive Boundary Proposal Network for Arbitrary Shape Text Detection

TextBPN Adaptive Boundary Proposal Network for Arbitrary Shape Text Detection; Accepted by ICCV2021. Note: The complete code (including training and t

S.X.Zhang 84 Dec 13, 2022
Official implementation of Self-supervised Image-to-text and Text-to-image Synthesis

Self-supervised Image-to-text and Text-to-image Synthesis This is the official implementation of Self-supervised Image-to-text and Text-to-image Synth

6 Jul 31, 2022
Implementation of GGB color space

GGB Color Space This package is implementation of GGB color space from Development of a Robust Algorithm for Detection of Nuclei and Classification of

Resha Dwika Hefni Al-Fahsi 2 Oct 06, 2021
An OpenAI Gym environment for multi-agent car racing based on Gym's original car racing environment.

Multi-Car Racing Gym Environment This repository contains MultiCarRacing-v0 a multiplayer variant of Gym's original CarRacing-v0 environment. This env

Igor Gilitschenski 56 Nov 01, 2022
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for Trans

Zhuang AI Group 105 Dec 06, 2022
The official codes of "Semi-supervised Models are Strong Unsupervised Domain Adaptation Learners".

SSL models are Strong UDA learners Introduction This is the official code of paper "Semi-supervised Models are Strong Unsupervised Domain Adaptation L

Yabin Zhang 26 Dec 26, 2022
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Jia Research Lab 115 Dec 23, 2022