The official codes for the ICCV2021 Oral presentation "Rethinking Counting and Localization in Crowds: A Purely Point-Based Framework"

Overview

P2PNet (ICCV2021 Oral Presentation)

This repository contains codes for the official implementation in PyTorch of P2PNet as described in Rethinking Counting and Localization in Crowds: A Purely Point-Based Framework.

An brief introduction of P2PNet can be found at 机器之心 (almosthuman).

The codes is tested with PyTorch 1.5.0. It may not run with other versions.

Visualized demos for P2PNet

The network

The overall architecture of the P2PNet. Built upon the VGG16, it firstly introduce an upsampling path to obtain fine-grained feature map. Then it exploits two branches to simultaneously predict a set of point proposals and their confidence scores.

Comparison with state-of-the-art methods

The P2PNet achieved state-of-the-art performance on several challenging datasets with various densities.

Methods Venue SHTechPartA
MAE/MSE
SHTechPartB
MAE/MSE
UCF_CC_50
MAE/MSE
UCF_QNRF
MAE/MSE
CAN CVPR'19 62.3/100.0 7.8/12.2 212.2/243.7 107.0/183.0
Bayesian+ ICCV'19 62.8/101.8 7.7/12.7 229.3/308.2 88.7/154.8
S-DCNet ICCV'19 58.3/95.0 6.7/10.7 204.2/301.3 104.4/176.1
SANet+SPANet ICCV'19 59.4/92.5 6.5/9.9 232.6/311.7 -/-
DUBNet AAAI'20 64.6/106.8 7.7/12.5 243.8/329.3 105.6/180.5
SDANet AAAI'20 63.6/101.8 7.8/10.2 227.6/316.4 -/-
ADSCNet CVPR'20 55.4/97.7 6.4/11.3 198.4/267.3 71.3/132.5
ASNet CVPR'20 57.78/90.13 -/- 174.84/251.63 91.59/159.71
AMRNet ECCV'20 61.59/98.36 7.02/11.00 184.0/265.8 86.6/152.2
AMSNet ECCV'20 56.7/93.4 6.7/10.2 208.4/297.3 101.8/163.2
DM-Count NeurIPS'20 59.7/95.7 7.4/11.8 211.0/291.5 85.6/148.3
Ours - 52.74/85.06 6.25/9.9 172.72/256.18 85.32/154.5

Comparison on the NWPU-Crowd dataset.

Methods MAE[O] MSE[O] MAE[L] MAE[S]
MCNN 232.5 714.6 220.9 1171.9
SANet 190.6 491.4 153.8 716.3
CSRNet 121.3 387.8 112.0 522.7
PCC-Net 112.3 457.0 111.0 777.6
CANNet 110.0 495.3 102.3 718.3
Bayesian+ 105.4 454.2 115.8 750.5
S-DCNet 90.2 370.5 82.9 567.8
DM-Count 88.4 388.6 88.0 498.0
Ours 77.44 362 83.28 553.92

The overall performance for both counting and localization.

nAP$_{\delta}$ SHTechPartA SHTechPartB UCF_CC_50 UCF_QNRF NWPU_Crowd
$\delta=0.05$ 10.9% 23.8% 5.0% 5.9% 12.9%
$\delta=0.25$ 70.3% 84.2% 54.5% 55.4% 71.3%
$\delta=0.50$ 90.1% 94.1% 88.1% 83.2% 89.1%
$\delta={{0.05:0.05:0.50}}$ 64.4% 76.3% 54.3% 53.1% 65.0%

Comparison for the localization performance in terms of F1-Measure on NWPU.

Method F1-Measure Precision Recall
FasterRCNN 0.068 0.958 0.035
TinyFaces 0.567 0.529 0.611
RAZ 0.599 0.666 0.543
Crowd-SDNet 0.637 0.651 0.624
PDRNet 0.653 0.675 0.633
TopoCount 0.692 0.683 0.701
D2CNet 0.700 0.741 0.662
Ours 0.712 0.729 0.695

Installation

  • Clone this repo into a directory named P2PNET_ROOT
  • Organize your datasets as required
  • Install Python dependencies. We use python 3.6.5 and pytorch 1.5.0
pip install -r requirements.txt

Organize the counting dataset

We use a list file to collect all the images and their ground truth annotations in a counting dataset. When your dataset is organized as recommended in the following, the format of this list file is defined as:

train/scene01/img01.jpg train/scene01/img01.txt
train/scene01/img02.jpg train/scene01/img02.txt
...
train/scene02/img01.jpg train/scene02/img01.txt

Dataset structures:

DATA_ROOT/
        |->train/
        |    |->scene01/
        |    |->scene02/
        |    |->...
        |->test/
        |    |->scene01/
        |    |->scene02/
        |    |->...
        |->train.list
        |->test.list

DATA_ROOT is your path containing the counting datasets.

Annotations format

For the annotations of each image, we use a single txt file which contains one annotation per line. Note that indexing for pixel values starts at 0. The expected format of each line is:

x1 y1
x2 y2
...

Training

The network can be trained using the train.py script. For training on SHTechPartA, use

CUDA_VISIBLE_DEVICES=0 python train.py --data_root $DATA_ROOT \
    --dataset_file SHHA \
    --epochs 3500 \
    --lr_drop 3500 \
    --output_dir ./logs \
    --checkpoints_dir ./weights \
    --tensorboard_dir ./logs \
    --lr 0.0001 \
    --lr_backbone 0.00001 \
    --batch_size 8 \
    --eval_freq 1 \
    --gpu_id 0

By default, a periodic evaluation will be conducted on the validation set.

Testing

A trained model (with an MAE of 51.96) on SHTechPartA is available at "./weights", run the following commands to launch a visualization demo:

CUDA_VISIBLE_DEVICES=0 python run_test.py --weight_path ./weights/SHTechA.pth --output_dir ./logs/

Acknowledgements

  • Part of codes are borrowed from the C^3 Framework.
  • We refer to DETR to implement our matching strategy.

Citing P2PNet

If you find P2PNet is useful in your project, please consider citing us:

@inproceedings{song2021rethinking,
  title={Rethinking Counting and Localization in Crowds: A Purely Point-Based Framework},
  author={Song, Qingyu and Wang, Changan and Jiang, Zhengkai and Wang, Yabiao and Tai, Ying and Wang, Chengjie and Li, Jilin and Huang, Feiyue and Wu, Yang},
  journal={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  year={2021}
}

Related works from Tencent Youtu Lab

  • [AAAI2021] To Choose or to Fuse? Scale Selection for Crowd Counting. (paper link & codes)
  • [ICCV2021] Uniformity in Heterogeneity: Diving Deep into Count Interval Partition for Crowd Counting. (paper link & codes)
Owner
Tencent YouTu Research
Tencent YouTu Research
PyTorch implementation of VAGAN: Visual Feature Attribution Using Wasserstein GANs

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 93 Aug 17, 2022
Official Python implementation of the FuzionCoin protocol

PyFuzc Official Python implementation of the FuzionCoin protocol WARNING: Under construction. Use at your own risk. Some functions may not work. Setup

FuzionCoin 3 Jul 07, 2022
A powerful framework for decentralized federated learning with user-defined communication topology

Scatterbrained Decentralized Federated Learning Scatterbrained makes it easy to build federated learning systems. In addition to traditional federated

Johns Hopkins Applied Physics Laboratory 7 Sep 26, 2022
Semantic segmentation models, datasets and losses implemented in PyTorch.

Semantic Segmentation in PyTorch Semantic Segmentation in PyTorch Requirements Main Features Models Datasets Losses Learning rate schedulers Data augm

Yassine 1.3k Jan 07, 2023
Pull sensitive data from users on windows including discord tokens and chrome data.

⭐ For a 🍪 Pegasus Pull sensitive data from users on windows including discord tokens and chrome data. Features 🟩 Discord tokens 🟩 Geolocation data

Addi 44 Dec 31, 2022
Matlab Python Heuristic Battery Opt - SMOP conversion and manual conversion

SMOP is Small Matlab and Octave to Python compiler. SMOP translates matlab to py

Tom Xu 1 Jan 12, 2022
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Vide

Jonas Wu 232 Dec 29, 2022
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with ONNX, TensorRT, ncnn, and OpenVINO supported.

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

7.7k Jan 03, 2023
Kohei's 5th place solution for xview3 challenge

xview3-kohei-solution Usage This repository assumes that the given data set is stored in the following locations: $ ls data/input/xview3/*.csv data/in

Kohei Ozaki 2 Jan 17, 2022
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI'22)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Max 1 Dec 29, 2021
Painting app using Python machine learning and vision technology.

AI Painting App We are making an app that will track our hand and helps us to draw from that. We will be using the advance knowledge of Machine Learni

Badsha Laskar 3 Oct 03, 2022
Official Implementation of Neural Splines

Neural Splines: Fitting 3D Surfaces with Inifinitely-Wide Neural Networks This repository contains the official implementation of the CVPR 2021 (Oral)

Francis Williams 56 Nov 29, 2022
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.

Neural Spatio-Temporal Point Processes [arxiv] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel Abstract. We propose a new class of parameterizations

Facebook Research 75 Dec 19, 2022
YOLOv5 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and e

Ultralytics 34.1k Dec 31, 2022
PyTorch reimplementation of the Smooth ReLU activation function proposed in the paper "Real World Large Scale Recommendation Systems Reproducibility and Smooth Activations" [arXiv 2022].

Smooth ReLU in PyTorch Unofficial PyTorch reimplementation of the Smooth ReLU (SmeLU) activation function proposed in the paper Real World Large Scale

Christoph Reich 10 Jan 02, 2023
Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included.

pixel_character_generator Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included. Dataset TinyHero D

Agnieszka Mikołajczyk 88 Nov 17, 2022
DL & CV-based indicator toolset for the vehicle drivers via live dash-cam footage.

Vehicle Indicator Toolset Deep Learning and Computer Vision based indicator toolset for vehicle drivers using live dash-cam footages. Tracking of vehi

Alex Xu 12 Dec 28, 2021
PyTorch GPU implementation of the ES-RNN model for time series forecasting

Fast ES-RNN: A GPU Implementation of the ES-RNN Algorithm A GPU-enabled version of the hybrid ES-RNN model by Slawek et al that won the M4 time-series

Kaung 305 Jan 03, 2023