ARU-Net - Deep Learning Chinese Word Segment

Overview

ARU-Net: A Neural Pixel Labeler for Layout Analysis of Historical Documents

Contents

Introduction

This is the Tensorflow code corresponding to A Two-Stage Method for Text Line Detection in Historical Documents . This repo contains the neural pixel labeling part described in the paper. It contains the so-called ARU-Net (among others) which is basically an extended version of the well known U-Net [2]. Besides the model and the basic workflow to train and test models, different data augmentation strategies are implemented to reduce the amound of training data needed. The repo's features are summarized below:

  • Inference Demo
    • Trained and freezed tensorflow graph included
    • Easy to reuse for own inference tests
  • Workflow
    • Full training workflow to parametrize and train your own models
    • Contains different models, data augmentation strategies, loss functions
    • Training on specific GPU, this enables the training of several models on a multi GPU system in parallel
    • Easy validation for trained model either using classical or ema-shadow weights

Please cite [1] if you find this repo useful and/or use this software for own work.

Installation

  1. Use python 2.7
  2. Any version of tensorflow version > 1.0 should be ok.
  3. Python packages: matplotlib (>=1.3.1), pillow (>=2.1.0), scipy (>=1.0.0), scikit-image (>=0.13.1), click (>=5.x)
  4. Clone the Repo
  5. Done

Demo

To run the demo follow:

  1. Open a shell
  2. Make sure Tensorflow is available, e.g., go to docker environment, activate conda, ...
  3. Navigate to the repo folder YOUR_PATH/ARU-Net/
  4. Run:
python run_demo_inference.py 

The demo will load a trained model and perform inference for five sample images of the cBad test set [3], [4]. The network was trained to predict the position of baselines and separators for the begining and end of each text line. After running the python script you should see a matplot window. To go to the next image just close it.

Example

The example images are sampled from the cBad test set [3], [4]. One image along with its results are shown below.

image_1 image_2 image_3

Training

This section describes step-by-step the procedure to train your own model.

Train data:

The following describes how the training data should look like:

  • The images along with its pixel ground truth have to be in the same folder
  • For each image: X.jpg, there have to be images named X_GT0.jpg, X_GT1.jpg, X_GT2.jpg, ... (for each channel to be predicted one GT image)
  • Each ground truth image is binary and contains ones at positions where the corresponding class is present and zeros otherwise (see demo_images/demo_traindata for a sample)
  • Generate a list containing row-wise the absolute pathes to the images (just the document images not the GT ones)

Val data:

The following describes how the validation data should look like:

Train the model:

The following describes how to train a model:

  • Have a look at the pix_lab/main/train_aru.py script
  • Parametrize it like you wish (have a look at the data_provider, cost and optimizer scripts to see all parameters)
  • Setting the correct paths, adapting the number of output classes and using the default parametrization should work fine for a first training
  • Run:
python -u pix_lab/main/train_aru.py &> info.log 

Validate the model:

The following describes how to validate a trained model:

  • Train and val losses are printed in info.log
  • To validate the checkpoints using the classical weights as well as its ema-shadows, adapt and run:
pix_lab/main/validate_ckpt.py

Comments

If you are interested in a related problem, this repo could maybe help you as well. The ARU-Net can be used for each pixel labeling task, besides the baseline detection task, it can be easily used for, e.g., binarization, page segmentation, ... purposes.

References

Please cite [1] if using this code.

A Two-Stage Method for Text Line Detection in Historical Documents

[1] T. Grüning, G. Leifert, T. Strauß, R. Labahn, A Two-Stage Method for Text Line Detection in Historical Documents

@article{Gruning2018,
arxivId = {1802.03345},
author = {Gr{\"{u}}ning, Tobias and Leifert, Gundram and Strau{\ss}, Tobias and Labahn, Roger},
title = {{A Two-Stage Method for Text Line Detection in Historical Documents}},
url = {http://arxiv.org/abs/1802.03345},
year = {2018}
}

U-Net: Convolutional Networks for Biomedical Image Segmentation

[2] O. Ronneberger, P, Fischer, T, Brox, U-Net: Convolutional Networks for Biomedical Image Segmentation

@article{Ronneberger2015,
arxivId = {1505.04597},
author = {Ronneberger, Olaf and Fischer, Philipp and Brox, Thomas},
journal = {Miccai},
pages = {234--241},
title = {{U-Net: Convolutional Networks for Biomedical Image Segmentation}},
year = {2015}
}

READ-BAD: A New Dataset and Evaluation Scheme for Baseline Detection in Archival Documents

[3] T. Grüning, R. Labahn, M. Diem, F. Kleber, S. Fiel, READ-BAD: A New Dataset and Evaluation Scheme for Baseline Detection in Archival Documents

@article{Gruning2017,
arxivId = {1705.03311},
author = {Gr{\"{u}}ning, Tobias and Labahn, Roger and Diem, Markus and Kleber, Florian and Fiel, Stefan},
title = {{READ-BAD: A New Dataset and Evaluation Scheme for Baseline Detection in Archival Documents}},
url = {http://arxiv.org/abs/1705.03311},
year = {2017}
}

A Robust and Binarization-Free Approach for Text Line Detection in Historical Documents

[4] M. Diem, F. Kleber, S. Fiel, T. Grüning, B. Gatos, ScriptNet: ICDAR 2017 Competition on Baseline Detection in Archival Documents (cBAD)

@misc{Diem2017,
author = {Diem, Markus and Kleber, Florian and Fiel, Stefan and Gr{\"{u}}ning, Tobias and Gatos, Basilis},
doi = {10.5281/zenodo.257972},
title = {ScriptNet: ICDAR 2017 Competition on Baseline Detection in Archival Documents (cBAD)},
year = {2017}
}
textspotter - An End-to-End TextSpotter with Explicit Alignment and Attention

An End-to-End TextSpotter with Explicit Alignment and Attention This is initially described in our CVPR 2018 paper. Getting Started Installation Clone

Tong He 323 Nov 10, 2022
Corner-based Region Proposal Network

Corner-based Region Proposal Network CRPN is a two-stage detection framework for multi-oriented scene text. It employs corners to estimate the possibl

xhzdeng 140 Nov 04, 2022
Source code of RRPN ---- Arbitrary-Oriented Scene Text Detection via Rotation Proposals

Paper source Arbitrary-Oriented Scene Text Detection via Rotation Proposals https://arxiv.org/abs/1703.01086 News We update RRPN in pytorch 1.0! View

428 Nov 22, 2022
This is used to convert a string to an Image with Handwritten Characters.

Text-to-Handwriting-using-python This is used to convert a string to an Image with Handwritten Characters. text_to_handwriting(string: str, save_to: s

Akashdeep Mahata 3 Aug 15, 2022
Learn computer graphics by writing GPU shaders!

This repo contains a selection of projects designed to help you learn the basics of computer graphics. We'll be writing shaders to render interactive two-dimensional and three-dimensional scenes.

Eric Zhang 1.9k Jan 02, 2023
BoxToolBox is a simple python application built around the openCV library

BoxToolBox is a simple python application built around the openCV library. It is not a full featured application to guide you through the w

František Horínek 1 Nov 12, 2021
OpenCV-Erlang/Elixir bindings

evision [WIP] : OS : arch Build Status Ubuntu 20.04 arm64 Ubuntu 20.04 armv7 Ubuntu 20.04 s390x Ubuntu 20.04 ppc64le Ubuntu 20.04 x86_64 macOS 11 Big

Cocoa 194 Jan 05, 2023
The code for CVPR2022 paper "Likert Scoring with Grade Decoupling for Long-term Action Assessment".

Likert Scoring with Grade Decoupling for Long-term Action Assessment This is the code for CVPR2022 paper "Likert Scoring with Grade Decoupling for Lon

10 Oct 21, 2022
Tools for manipulating and evaluating the hOCR format for representing multi-lingual OCR results by embedding them into HTML.

hocr-tools About About the code Installation System-wide with pip System-wide from source virtualenv Available Programs hocr-check -- check the hOCR f

OCRopus 285 Dec 08, 2022
Code for the paper: Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image Super-resolution

Fusformer Code for the paper: "Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image Super-resolution" Plateform Python 3.8.5 + Pytor

Jin-Fan Hu (胡锦帆) 11 Dec 12, 2022
Markup for note taking

Subtext: markup for note-taking Subtext is a text-based, block-oriented hypertext format. It is designed with note-taking in mind. It has a simple, pe

Gordon Brander 224 Jan 01, 2023
Document Layout Analysis

Eynollah Document Layout Analysis Introduction This tool performs document layout analysis (segmentation) from image data and returns the results as P

QURATOR-SPK 198 Dec 29, 2022
Recognizing cropped text in natural images.

ASTER: Attentional Scene Text Recognizer with Flexible Rectification ASTER is an accurate scene text recognizer with flexible rectification mechanism.

Baoguang Shi 681 Jan 02, 2023
An unofficial implementation of the paper "AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss".

AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss This is an unofficial implementation of AutoVC based on the official one. The reposi

Chien-yu Huang 27 Jun 16, 2022
PSENet - Shape Robust Text Detection with Progressive Scale Expansion Network.

News Python3 implementations of PSENet [1], PAN [2] and PAN++ [3] are released at https://github.com/whai362/pan_pp.pytorch. [1] W. Wang, E. Xie, X. L

1.1k Dec 24, 2022
The CIS OCR PostCorrectionTool

The CIS OCR Post Correction Tool PoCoTo Source code for the Java-based PoCoTo client enabling fast interactive batch corrections of complete OCR error

CIS OCR Group 36 Dec 15, 2022
天池2021"全球人工智能技术创新大赛"【赛道一】:医学影像报告异常检测 - 第三名解决方案

天池2021"全球人工智能技术创新大赛"【赛道一】:医学影像报告异常检测 比赛链接 个人博客记录 目录结构 ├── final------------------------------------决赛方案PPT ├── preliminary_contest--------------------

19 Aug 17, 2022
An Implementation of the seglink alogrithm in paper Detecting Oriented Text in Natural Images by Linking Segments

Tips: A more recent scene text detection algorithm: PixelLink, has been implemented here: https://github.com/ZJULearning/pixel_link Contents: Introduc

dengdan 484 Dec 07, 2022
This is a repository to learn and get more computer vision skills, make robotics projects integrating the computer vision as a perception tool and create a lot of awesome advanced controllers for the robots of the future.

This is a repository to learn and get more computer vision skills, make robotics projects integrating the computer vision as a perception tool and create a lot of awesome advanced controllers for the

Elkin Javier Guerra Galeano 17 Nov 03, 2022
Virtual Zoom Gesture using OpenCV

Virtual_Zoom_Gesture I have created a virtual zoom gesture where we can Zoom in and Zoom out any image and even we can move that image anywhere on the

Mudit Sinha 2 Dec 26, 2021