Re-implementation of 'Grokking: Generalization beyond overfitting on small algorithmic datasets'

Related tags

Deep Learninggrokking
Overview

Re-implementation of the paper 'Grokking: Generalization beyond overfitting on small algorithmic datasets'

Paper

Original paper can be found here

Datasets

I'm not super clear on how they defined their division. I am using integer division:

  • $$x\circ y = (x // y) mod p$$, for some prime $$p$$ and $$0\leq x,y \leq p$$
  • $$x\circ y = (x // y) mod p$$ if y is odd else (x - y) mod p, for some prime $$p$$ and $$0\leq x,y \leq p$$

Hyperparameters

The default hyperparameters are from the paper, but can be adjusted via the command line when running train.py

Running experiments

To run with default settings, simply run python train.py. The first time you train on any dataset you have to specify --force_data.

Arguments:

optimizer args

  • "--lr", type=float, default=1e-3
  • "--weight_decay", type=float, default=1
  • "--beta1", type=float, default=0.9
  • "--beta2", type=float, default=0.98

model args

  • "--num_heads", type=int, default=4
  • "--layers", type=int, default=2
  • "--width", type=int, default=128

data args

  • "--data_name", type=str, default="perm", choices=[
    • "perm_xy", # permutation composition x * y
    • "perm_xyx1", # permutation composition x * y * x^-1
    • "perm_xyx", # permutation composition x * y * x
    • "plus", # x + y
    • "minus", # x - y
    • "div", # x / y
    • "div_odd", # x / y if y is odd else x - y
    • "x2y2", # x^2 + y^2
    • "x2xyy2", # x^2 + y^2 + xy
    • "x2xyy2x", # x^2 + y^2 + xy + x
    • "x3xy", # x^3 + y
    • "x3xy2y" # x^3 + xy^2 + y ]
  • "--num_elements", type=int, default=5 (choose 5 for permutation data, 97 for arithmetic data)
  • "--data_dir", type=str, default="./data"
  • "--force_data", action="store_true", help="Whether to force dataset creation."

training args

  • "--batch_size", type=int, default=512
  • "--steps", type=int, default=10**5
  • "--train_ratio", type=float, default=0.5
  • "--seed", type=int, default=42
  • "--verbose", action="store_true"
  • "--log_freq", type=int, default=10
  • "--num_workers", type=int, default=4
Owner
Tom Lieberum
Master student in AI at the University of Amsterdam. Effective altruist, rationalist, and transhumanist. Got my B.Sc. in Physics from RWTH Aachen Uni
Tom Lieberum
ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

Ibai Gorordo 18 Nov 06, 2022
Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) in PyTorch

alias-free-gan-pytorch Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) This implementation

Kim Seonghyeon 502 Jan 03, 2023
Rational Activation Functions - Replacing Padé Activation Units

Rational Activations - Learnable Rational Activation Functions First introduce as PAU in Padé Activation Units: End-to-end Learning of Activation Func

<a href=[email protected]"> 38 Nov 22, 2022
An open source app to help calm you down when needed.

By: Seanpm2001, Et; Al. Top README.md Read this article in a different language Sorted by: A-Z Sorting options unavailable ( af Afrikaans Afrikaans |

Sean P. Myrick V19.1.7.2 2 Oct 24, 2022
Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images

Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images [ICCV 2021] © Mahmood Lab - This code is made avail

Mahmood Lab @ Harvard/BWH 63 Dec 01, 2022
🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

Realcat 270 Jan 07, 2023
Pytorch implementation of MaskFlownet

MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1

Daniele Cattaneo 84 Nov 02, 2022
Semi-supervised Domain Adaptation via Minimax Entropy

Semi-supervised Domain Adaptation via Minimax Entropy (ICCV 2019) Install pip install -r requirements.txt The code is written for Pytorch 0.4.0, but s

Vision and Learning Group 243 Jan 09, 2023
Customised to detect objects automatically by a given model file(onnx)

LabelImg LabelImg is a graphical image annotation tool. It is written in Python and uses Qt for its graphical interface. Annotations are saved as XML

Heeone Lee 1 Jun 07, 2022
Torch-mutable-modules - Use in-place and assignment operations on PyTorch module parameters with support for autograd

Torch Mutable Modules Use in-place and assignment operations on PyTorch module p

Kento Nishi 7 Jun 06, 2022
TensorFlow implementation of "Attention is all you need (Transformer)"

[TensorFlow 2] Attention is all you need (Transformer) TensorFlow implementation of "Attention is all you need (Transformer)" Dataset The MNIST datase

YeongHyeon Park 4 Jan 05, 2022
TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

YeongHyeon Park 7 Aug 28, 2022
An introduction to bioimage analysis - http://bioimagebook.github.io

Introduction to Bioimage Analysis This book tries explain the main ideas of image analysis in a practical and engaging way. It's written primarily for

Bioimage Book 20 Nov 28, 2022
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models (published in ICLR2018)

Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models Pouya Samangouei*, Maya Kabkab*, Rama Chellappa [*: authors co

Maya Kabkab 212 Dec 07, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
Pyramid addon for OpenAPI3 validation of requests and responses.

Validate Pyramid views against an OpenAPI 3.0 document Peace of Mind The reason this package exists is to give you peace of mind when providing a REST

Pylons Project 79 Dec 30, 2022
Out of Distribution Detection on Natural Adversarial Examples

OOD-on-NAE Research project on out of distribution detection for the Computer Vision course by Prof. Rob Fergus (CSCI-GA 2271) Paper out on arXiv - ht

Anugya 1 Jun 08, 2022
Official PyTorch implementation of Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations

Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, Yu

UT-Austin Robot Perception and Learning Lab 63 Jan 03, 2023
A time series processing library

Timeseria Timeseria is a time series processing library which aims at making it easy to handle time series data and to build statistical and machine l

Stefano Alberto Russo 11 Aug 08, 2022
Deep Learning Package based on TensorFlow

White-Box-Layer is a Python module for deep learning built on top of TensorFlow and is distributed under the MIT license. The project was started in M

YeongHyeon Park 7 Dec 27, 2021