Code release for NeuS

Related tags

Deep LearningNeuS
Overview

NeuS

We present a novel neural surface reconstruction method, called NeuS, for reconstructing objects and scenes with high fidelity from 2D image inputs.

Project page | Paper | Data

This is the official repo for the implementation of NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction.

Usage

Data Convention

The data is organized as follows:

<case_name>
|-- cameras_xxx.npz    # camera parameters
|-- image
    |-- 000.png        # target image for each view
    |-- 001.png
    ...
|-- mask
    |-- 000.png        # target mask each view (For unmasked setting, set all pixels as 255)
    |-- 001.png
    ...

Here the cameras_xxx.npz follows the data format in IDR, where world_mat_xx denotes the world to image projection matrix, and scale_mat_xx denotes the normalization matrix.

Setup

Clone this repository

git clone https://github.com/Totoro97/NeuS.git
cd NeuS
pip install -r requirements.txt
Dependencies (click to expand)
  • torch==1.8.0
  • opencv_python==4.5.2.52
  • trimesh==3.9.8
  • numpy==1.19.2
  • pyhocon==0.3.57
  • icecream==2.1.0
  • tqdm==4.50.2
  • scipy==1.7.0
  • PyMCubes==0.1.2

Running

  • Training without mask
python exp_runner.py --mode train --conf ./confs/womask.conf --case <case_name>
  • Training with mask
python exp_runner.py --mode train --conf ./confs/wmask.conf --case <case_name>
  • Extract surface from trained model
python exp_runner.py --mode validate_mesh --conf <config_file> --case <case_name> --is_continue # use latest checkpoint

The corresponding mesh can be found in exp/<case_name>/<exp_name>/meshes/<iter_steps>.ply.

  • View interpolation
python exp_runner.py --mode interpolate_<img_idx_0>_<img_idx_1> --conf <config_file> --case <case_name> --is_continue # use latest checkpoint

The corresponding image set of view interpolation can be found in exp/<case_name>/<exp_name>/render/.

Citation

Cite as below if you find this repository is helpful to your project:

@article{wang2021neus,
  title={NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction},
  author={Wang, Peng and Liu, Lingjie and Liu, Yuan and Theobalt, Christian and Komura, Taku and Wang, Wenping},
  journal={arXiv preprint arXiv:2106.10689},
  year={2021}
}

Acknowledgement

Some code snippets are borrowed from IDR and NeRF-pytorch. Thanks for these great projects.

Owner
Peng Wang
PhD student @ HKU
Peng Wang
Measures input lag without dedicated hardware, performing motion detection on recorded or live video

What is InputLagTimer? This tool can measure input lag by analyzing a video where both the game controller and the game screen can be seen on a webcam

Bruno Gonzalez 4 Aug 18, 2022
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 02, 2022
CS506-Spring2022 - Code and Slides for Boston University CS 506

CS 506 - Computational Tools for Data Science Code, slides, and notes for Boston

Lance Galletti 17 May 06, 2022
A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines

A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines Understanding the results of deep neural networks is

Johan van den Heuvel 2 Dec 13, 2021
Algorithmic trading with deep learning experiments

Deep-Trading Algorithmic trading with deep learning experiments. Now released part one - simple time series forecasting. I plan to implement more soph

Alex Honchar 1.4k Jan 02, 2023
Create images and texts with the First Order Generative Adversarial Networks

First Order Divergence for training GANs This repository contains code accompanying the paper First Order Generative Advesarial Netoworks The majority

Zalando Research 35 Dec 11, 2021
A curated list of awesome Model-Based RL resources

Awesome Model-Based Reinforcement Learning This is a collection of research papers for model-based reinforcement learning (mbrl). And the repository w

OpenDILab 427 Jan 03, 2023
NeoPlay is the project dedicated to ESport events.

NeoPlay is the project dedicated to ESport events. On this platform users can participate in tournaments with prize pools as well as create their own tournaments.

3 Dec 18, 2021
Very deep VAEs in JAX/Flax

Very Deep VAEs in JAX/Flax Implementation of the experiments in the paper Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on I

Jamie Townsend 42 Dec 12, 2022
This is a project based on retinaface face detection, including ghostnet and mobilenetv3

English | 简体中文 RetinaFace in PyTorch Chinese detailed blog:https://zhuanlan.zhihu.com/p/379730820 Face recognition with masks is still robust---------

pogg 59 Dec 21, 2022
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
A Free and Open Source Python Library for Multiobjective Optimization

Platypus What is Platypus? Platypus is a framework for evolutionary computing in Python with a focus on multiobjective evolutionary algorithms (MOEAs)

Project Platypus 424 Dec 18, 2022
PyTorch Implementation of Unsupervised Depth Completion with Calibrated Backprojection Layers (ORAL, ICCV 2021)

Unsupervised Depth Completion with Calibrated Backprojection Layers PyTorch implementation of Unsupervised Depth Completion with Calibrated Backprojec

80 Dec 13, 2022
Implementation of ICLR 2020 paper "Revisiting Self-Training for Neural Sequence Generation"

Self-Training for Neural Sequence Generation This repo includes instructions for running noisy self-training algorithms from the following paper: Revi

Junxian He 45 Dec 31, 2022
TensorFlow implementation of Elastic Weight Consolidation

Elastic weight consolidation Introduction A TensorFlow implementation of elastic weight consolidation as presented in Overcoming catastrophic forgetti

James Stokes 67 Oct 11, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

Adelaide Intelligent Machines (AIM) Group 7 Sep 12, 2022
Buffon’s needle: one of the oldest problems in geometric probability

Buffon-s-Needle Buffon’s needle is one of the oldest problems in geometric proba

3 Feb 18, 2022
Official implementation for Multi-Modal Interaction Graph Convolutional Network for Temporal Language Localization in Videos

Multi-modal Interaction Graph Convolutioal Network for Temporal Language Localization in Videos Official implementation for Multi-Modal Interaction Gr

Zongmeng Zhang 15 Oct 18, 2022
Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

NeuLab 40 Dec 23, 2022
Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this mod

Jesper Wohlert 313 Dec 27, 2022