Towards Debiasing NLU Models from Unknown Biases

Overview

Towards Debiasing NLU Models from Unknown Biases

Abstract: NLU models often exploit biased features to achieve high dataset-specific performance without properly learning the intended task. Recently proposed debiasing methods are shown to be effective in mitigating this tendency. However, these methods rely on a major assumption that the type of biased features is known a-priori, which limits their application to many NLU tasks and datasets. In this work, we present the first step to bridge this gap by introducing a self-debiasing framework that prevents models from mainly utilizing biases without knowing them in advance. The proposed framework is general and complementary to the existing debiasing methods. We show that the proposed framework allows these existing methods to retain the improvement on the challenge datasets (i.e., sets of examples designed to expose models’ reliance to biases) without specifically targeting certain biases. Furthermore, the evaluation suggests that applying the framework results in improved overall robustness.

The repository contains the code to reproduce our work in debiasing NLU models without prior information on biases. We provide 3 runs of experiment that are shown in our paper:

  1. Debias MNLI model from syntactic bias and evaluate on HANS as the out-of-distribution data using example reweighting.
  2. Debias MNLI model from syntactic bias and evaluate on HANS as the out-of-distribution data using product of expert.
  3. Debias MNLI model from syntactic bias and evaluate on HANS as the out-of-distribution data using confidence regularization.

Requirements

The code requires python >= 3.6 and pytorch >= 1.1.0.

Additional required dependencies can be found in requirements.txt. Install all requirements by running:

pip install -r requirements.txt

Data

Our experiments use MNLI dataset version provided by GLUE benchmark. Download the file from here, and unzip under the directory ./dataset The dataset directory should be structured as the following:

└── dataset 
    └── MNLI
        ├── train.tsv
        ├── dev_matched.tsv
        ├── dev_mismatched.tsv
        ├── dev_mismatched.tsv

Running the experiments

For each evaluation setting, use the --mode arguments to set the appropriate loss function. Choose the annealed version of the loss function for reproducing the annealed results.

To reproduce our result on MNLI ⮕ HANS, run the following:

cd src/
CUDA_VISIBLE_DEVICES=9 python train_distill_bert.py \
  --output_dir ../experiments_self_debias_mnli_seed111/bert_reweighted_sampled2K_teacher_seed111_annealed_1to08 \
  --do_train --do_eval --mode reweight_by_teacher_annealed \
  --custom_teacher ../teacher_preds/mnli_trained_on_sample2K_seed111.json --seed 111 --which_bias hans

Biased examples identification

To obtain predictions of the shallow models, we train the same model architecture on the fraction of the dataset. For MNLI we subsample 2000 examples and train the model for 5 epochs. For obtaining shallow models of other datasets please see the appendix of our paper. The shallow model can be obtained with the command below:

cd src/
CUDA_VISIBLE_DEVICES=9 python train_distill_bert.py \
 --output_dir ../experiments_shallow_mnli/bert_base_sampled2K_seed111 \
 --do_train --do_eval --do_eval_on_train --mode none\
 --seed 111 --which_bias hans --debug --num_train_epochs 5 --debug_num 2000

Once the training and the evaluation on train set is done, copy the probability json files in the output directory to ../teacher_preds/mnli_trained_on_sample2K_seed111.json.

Expected results

Results on the MNLI ⮕ HANS setting without annealing:

Mode Seed MNLI-m MNLI-mm HANS avg.
None 111 84.57 84.72 62.04
reweighting 111 81.8 82.3 72.1
PoE 111 81.5 81.1 70.3
conf-reg 222 83.7 84.1 68.7
Owner
Ubiquitous Knowledge Processing Lab
Ubiquitous Knowledge Processing Lab
MLPs for Vision and Langauge Modeling (Coming Soon)

MLP Architectures for Vision-and-Language Modeling: An Empirical Study MLP Architectures for Vision-and-Language Modeling: An Empirical Study (Code wi

Yixin Nie 27 May 09, 2022
Pytorch implementation of AngularGrad: A New Optimization Technique for Angular Convergence of Convolutional Neural Networks

AngularGrad Optimizer This repository contains the oficial implementation for AngularGrad: A New Optimization Technique for Angular Convergence of Con

mario 124 Sep 16, 2022
Tracking Pipeline helps you to solve the tracking problem more easily

Tracking_Pipeline Tracking_Pipeline helps you to solve the tracking problem more easily I integrate detection algorithms like: Yolov5, Yolov4, YoloX,

VNOpenAI 32 Dec 21, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
Deep Learning for Time Series Forecasting.

nixtlats:Deep Learning for Time Series Forecasting [nikstla] (noun, nahuatl) Period of time. State-of-the-art time series forecasting for pytorch. Nix

Nixtla 5 Dec 06, 2022
A collection of scripts I developed for personal and working projects.

A collection of scripts I developed for personal and working projects Table of contents Introduction Repository diagram structure List of scripts pyth

Gianluca Bianco 109 Dec 26, 2022
(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

BRNet Introduction This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds,

86 Oct 05, 2022
For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training.

LongScientificFormer For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training. Some code

Athar Sefid 6 Nov 02, 2022
i3DMM: Deep Implicit 3D Morphable Model of Human Heads

i3DMM: Deep Implicit 3D Morphable Model of Human Heads CVPR 2021 (Oral) Arxiv | Poject Page This project is the official implementation our work, i3DM

Tarun Yenamandra 60 Jan 03, 2023
Efficient and intelligent interactive segmentation annotation software

Efficient and intelligent interactive segmentation annotation software

294 Dec 30, 2022
Official pytorch implementation of DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces

DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces Minhyuk Sung*, Zhenyu Jiang*, Panos Achlioptas, Niloy J. Mitra, Leonidas

Zhenyu Jiang 21 Aug 30, 2022
Torch-ngp - A pytorch implementation of the hash encoder proposed in instant-ngp

HashGrid Encoder (WIP) A pytorch implementation of the HashGrid Encoder from ins

hawkey 1k Jan 01, 2023
GoodNews Everyone! Context driven entity aware captioning for news images

This is the code for a CVPR 2019 paper, called GoodNews Everyone! Context driven entity aware captioning for news images. Enjoy! Model preview: Huge T

117 Dec 19, 2022
Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFlow 2

DreamerPro Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFl

22 Nov 01, 2022
Official repository for "Restormer: Efficient Transformer for High-Resolution Image Restoration". SOTA for motion deblurring, image deraining, denoising (Gaussian/real data), and defocus deblurring.

Restormer: Efficient Transformer for High-Resolution Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,

Syed Waqas Zamir 906 Dec 30, 2022
Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021).

AA-RMVSNet Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021) in PyTorch. paper link: arXiv | CVF Change Log Ju

Qingtian Zhu 97 Dec 30, 2022
The Submission for SIMMC 2.0 Challenge 2021

The Submission for SIMMC 2.0 Challenge 2021 challenge website Requirements python 3.8.8 pytorch 1.8.1 transformers 4.8.2 apex for multi-gpu nltk Prepr

5 Jul 26, 2022
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.

TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN

Hila Chefer 221 Dec 13, 2022
The official PyTorch implementation for the paper "sMGC: A Complex-Valued Graph Convolutional Network via Magnetic Laplacian for Directed Graphs".

Magnetic Graph Convolutional Networks About The official PyTorch implementation for the paper sMGC: A Complex-Valued Graph Convolutional Network via M

3 Feb 25, 2022
make ASCII Art by Deep Learning

DeepAA This is convolutional neural networks generating ASCII art. This repository is under construction. This work is accepted by NIPS 2017 Workshop,

OsciiArt 1.4k Dec 28, 2022