DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation

Related tags

Deep LearningDFFNet
Overview

DFFNet

CIFReNet Show

Paper

DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation.

Xiangyan Tang, Wenxuan Tu, Keqiu Li, Jieren Cheng.

Information Sciences, 565: 326-343, 2021.

License

All rights reserved. Licensed under the Apache License 2.0

The code is released for academic research use only. For commercial use, please contact [[email protected]].

Installation

Clone this repo.

https://github.com/WxTu/DFFNet.git
  • Windows or Linux
  • Python3
  • Pytorch(0.3+)
  • Numpy
  • Torchvision
  • Matplotlib

Preparation

We use Cityscapes, Camvid and Helen datasets. To train a model on these datasets, download datasets from official websites.

Our backbone network is pre-trained on the ImageNet dataset provided by F. Li et al. You can download publically available pre-trained MobileNet v2 from this website.

Code Structure

  • data/Dataset.py: processes the dataset before passing to the network.
  • model/DFFNet.py: defines the architecture of the whole model.
  • model/Backbone.py: defines the encoder.
  • model/Layers.py: defines the MFFM, LSPM, and others.
  • utils/Config.py: defines some hyper-parameters.
  • utils/Process.py: defines the process of data pretreatment.
  • utils/Utils.py: defines the loss, optimization, metrics, and others.
  • utils/Visualization.py: defines the data visualization.
  • Train.py: the entry point for training and validation.
  • Test.py: the entry point for testing.

Visualization

Visual Show

Contact

[email protected]

Any discussions or concerns are welcomed!

Citation

If you use this code for your research, please cite our papers.

@article{Tang2021DFFNet,
  title={DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation},
  author={Xiangyan Tang and Wenxuan Tu and Keqiu Li and Jieren Cheng},
  journal={Information Sciences},
  volume={565},
  pages={326-343},
  year={2021}
}

Acknowledgement

https://github.com/ansleliu/LightNet

https://github.com/meetshah1995/pytorch-semseg

https://github.com/zijundeng/pytorch-semantic-segmentation

https://github.com/Tramac/awesome-semantic-segmentation-pytorch

Owner
Data Miner & CVer
Episodic-memory - Ego4D Episodic Memory Benchmark

Ego4D Episodic Memory Benchmark EGO4D is the world's largest egocentric (first p

3 Feb 18, 2022
Prototypical Networks for Few shot Learning in PyTorch

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 835 Jan 08, 2023
Powerful unsupervised domain adaptation method for dense retrieval.

Powerful unsupervised domain adaptation method for dense retrieval

Ubiquitous Knowledge Processing Lab 191 Dec 28, 2022
DvD-TD3: Diversity via Determinants for TD3 version

DvD-TD3: Diversity via Determinants for TD3 version The implementation of paper Effective Diversity in Population Based Reinforcement Learning. Instal

3 Feb 11, 2022
Copy Paste positive polyp using poisson image blending for medical image segmentation

Copy Paste positive polyp using poisson image blending for medical image segmentation According poisson image blending I've completely used it for bio

Phạm Vũ Hùng 2 Oct 19, 2021
Markov Attention Models

Introduction This repo contains code for reproducing the results in the paper Graphical Models with Attention for Context-Specific Independence and an

Vicarious 0 Dec 09, 2021
Implementation of UNet on the Joey ML framework

Independent Research Project - Code Joey can be cloned from here https://github.com/devitocodes/joey/. Devito and other dependencies such as PyTorch a

Navjot Kukreja 1 Oct 21, 2021
Expressive Power of Invariant and Equivaraint Graph Neural Networks (ICLR 2021)

Expressive Power of Invariant and Equivaraint Graph Neural Networks In this repository, we show how to use powerful GNN (2-FGNN) to solve a graph alig

Marc Lelarge 36 Dec 12, 2022
[NeurIPS 2020] Code for the paper "Balanced Meta-Softmax for Long-Tailed Visual Recognition"

Balanced Meta-Softmax Code for the paper Balanced Meta-Softmax for Long-Tailed Visual Recognition Jiawei Ren, Cunjun Yu, Shunan Sheng, Xiao Ma, Haiyu

Jiawei Ren 65 Dec 21, 2022
Machine learning, in numpy

numpy-ml Ever wish you had an inefficient but somewhat legible collection of machine learning algorithms implemented exclusively in NumPy? No? Install

David Bourgin 11.6k Dec 30, 2022
How will electric vehicles affect traffic congestion and energy consumption: an integrated modelling approach

EV-charging-impact This repository contains the code that has been used for the Queue modelling for the paper "How will electric vehicles affect traff

7 Nov 30, 2022
Implementing DropPath/StochasticDepth in PyTorch

%load_ext memory_profiler Implementing Stochastic Depth/Drop Path In PyTorch DropPath is available on glasses my computer vision library! Introduction

Francesco Saverio Zuppichini 13 Jan 05, 2023
🔮 A refreshing functional take on deep learning, compatible with your favorite libraries

Thinc: A refreshing functional take on deep learning, compatible with your favorite libraries From the makers of spaCy, Prodigy and FastAPI Thinc is a

Explosion 2.6k Dec 30, 2022
Code for Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021)

Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021) Hang Zhou, Yasheng Sun, Wayne Wu, Chen Cha

Hang_Zhou 628 Dec 28, 2022
Pun Detection and Location

Pun Detection and Location “The Boating Store Had Its Best Sail Ever”: Pronunciation-attentive Contextualized Pun Recognition Yichao Zhou, Jyun-yu Jia

lawson 3 May 13, 2022
Dahua Camera and Doorbell Home Assistant Integration

Home Assistant Dahua Integration The Dahua Home Assistant integration allows you to integrate your Dahua cameras and doorbells in Home Assistant. It's

Ronnie 216 Dec 26, 2022
TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

YeongHyeon Park 7 Aug 28, 2022
Pytorch implementation of "A simple neural network module for relational reasoning" (Relational Networks)

Pytorch implementation of Relational Networks - A simple neural network module for relational reasoning Implemented & tested on Sort-of-CLEVR task. So

Kim Heecheol 800 Dec 05, 2022
Code accompanying our NeurIPS 2021 traffic4cast challenge

Traffic forecasting on traffic movie snippets This repo contains all code to reproduce our approach to the IARAI Traffic4cast 2021 challenge. In the c

Nina Wiedemann 2 Aug 09, 2022
Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs

Implementation for the paper: Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs, Nurendra Choudhary, Nikhil Rao, Sumeet Ka

Nurendra Choudhary 8 Nov 15, 2022