a practicable framework used in Deep Learning. So far UDL only provide DCFNet implementation for the ICCV paper (Dynamic Cross Feature Fusion for Remote Sensing Pansharpening)

Related tags

Deep LearningUDL
Overview

UDL

UDL is a practicable framework used in Deep Learning (computer vision).

Benchmark

codes, results and models are available in UDL, please contact @Liang-Jian Deng (corresponding author)

Pansharpening model zoo:
  • PNN (RS'2016)
  • PanNet (CVPR'2017)
  • DiCNN1 (JSTAR'2019)
  • FusionNet (TGRS'2020)
  • DCFNet (ICCV'2021)

Results of DCFNet

Quantitative results

wv3 SAM ERGAS
new_data10 3.934 2.531
new_data11 4.133 2.630
new_data12_512 4.108 2.712
new_data6 2.638 1.461
new_data7 3.866 2.820
new_data8 3.257 2.210
new_data9 4.154 2.718
Avg(std) 3.727(0.571) 2.440(0.474)
Ideal Value 0 0
wv3_1258 SAM ERGAS
Avg(std) 3.377(1.200) 2.257(0.910)
Ideal Value 0 0

Visual results

please see the paper and the sub-directory: ./UDL/results/DCFNet

Install [Option]

please run python setup.py develop

Usage

open UDL/panshaprening/tests, run the following code:

python run_DCFNet.py

Note that default configures don't fit other environments, you can modify configures in pansharpening/models/DCFNet/option_DCFNet.py.

Benefit from mmcv/config.py, the project has the global configures in Basis/option.py, option_DCFNet inherits directly from Basis/option.py.

1. Data preparation

You need to download WorldView-3 datasets.

The directory tree should be look like this:

|-$ROOT/datasets
├── pansharpening
│   ├── training_data
│   │   ├── train_wv3_10000.h5
│   │   ├── valid_wv3_10000.h5
│   ├── test_data
│   │   ├── WV3_Simu
│   │   │   ├── new_data6.mat
│   │   │   ├── new_data7.mat
│   │   │   ├── ...
│   │   ├── WV3_Simu_mulExm
│   │   │   ├── test1_mulExm1258.mat

2. Training

args.eval = False, args.dataset='wv3'

3. Inference

args.eval = True, args.dataset='wv3_singleMat'

Plannings

Please expect more tasks and models

  • pansharpening

    • models
  • derain

    • models
  • HISR

    • models

Contribution

We appreciate all contributions to improve UDL. Looking forward to your contribution to UDL.

Citation

If you use this toolbox or benchmark in your research, please cite this project.

@InProceedings{Wu_2021_ICCV,
    author    = {Wu, Xiao and Huang, Ting-Zhu and Deng, Liang-Jian and Zhang, Tian-Jing},
    title     = {Dynamic Cross Feature Fusion for Remote Sensing Pansharpening},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {14687-14696}
}

Acknowledgement

  • MMCV: OpenMMLab foundational library for computer vision.
  • HRNet : High-resolution networks and Segmentation Transformer for Semantic Segmentation

License & Copyright

This project is open sourced under GNU General Public License v3.0

Owner
Xiao Wu
Xiao Wu
Data and code for the paper "Importance of Kernel Bandwidth in Quantum Machine Learning"

Reproducibility materials for "Importance of Kernel Bandwidth in Quantum Machine Learning" Repo structure: code contains Python scripts used to genera

Ruslan Shaydulin 3 Oct 23, 2022
Python package for downloading ECMWF reanalysis data and converting it into a time series format.

ecmwf_models Readers and converters for data from the ECMWF reanalysis models. Written in Python. Works great in combination with pytesmo. Citation If

TU Wien - Department of Geodesy and Geoinformation 31 Dec 26, 2022
Lucid Sonic Dreams syncs GAN-generated visuals to music.

Lucid Sonic Dreams Lucid Sonic Dreams syncs GAN-generated visuals to music. By default, it uses NVLabs StyleGAN2, with pre-trained models lifted from

731 Jan 02, 2023
Automatic voice-synthetised summaries of latest research papers on arXiv

PaperWhisperer PaperWhisperer is a Python application that keeps you up-to-date with research papers. How? It retrieves the latest articles from arXiv

Valerio Velardo 124 Dec 20, 2022
JugLab 33 Dec 30, 2022
TensorFlow port of PyTorch Image Models (timm) - image models with pretrained weights.

TensorFlow-Image-Models Introduction Usage Models Profiling License Introduction TensorfFlow-Image-Models (tfimm) is a collection of image models with

Martins Bruveris 227 Dec 20, 2022
Focal Loss for Dense Rotation Object Detection

Convert ResNets weights from GluonCV to Tensorflow Abstract GluonCV released some new resnet pre-training weights and designed some new resnets (such

17 Nov 24, 2021
Python calculations for the position of the sun and moon.

Astral This is 'astral' a Python module which calculates Times for various positions of the sun: dawn, sunrise, solar noon, sunset, dusk, solar elevat

Simon Kennedy 169 Dec 20, 2022
A Pytorch Implementation of a continuously rate adjustable learned image compression framework.

GainedVAE A Pytorch Implementation of a continuously rate adjustable learned image compression framework, Gained Variational Autoencoder(GainedVAE). N

39 Dec 24, 2022
Code for Mesh Convolution Using a Learned Kernel Basis

Mesh Convolution This repository contains the implementation (in PyTorch) of the paper FULLY CONVOLUTIONAL MESH AUTOENCODER USING EFFICIENT SPATIALLY

Yi_Zhou 35 Jan 03, 2023
tree-math: mathematical operations for JAX pytrees

tree-math: mathematical operations for JAX pytrees tree-math makes it easy to implement numerical algorithms that work on JAX pytrees, such as iterati

Google 137 Dec 28, 2022
Viperdb - A tiny log-structured key-value database written in pure Python

ViperDB 🐍 ViperDB is a lightweight embedded key-value store written in pure Pyt

17 Oct 17, 2022
Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19)

Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19) Tianyu Wang*, Xin Yang*, Ke Xu, Shaozhe Chen, Qiang Zhang, Ry

Steve Wong 177 Dec 01, 2022
SpineAI Bilsky Grading With Python

SpineAI-Bilsky-Grading SpineAI Paper with Code 📫 Contact Address correspondence to J.T.P.D.H. (e-mail: james_hallinan AT nuhs.edu.sg) Disclaimer This

<a href=[email protected]"> 2 Dec 16, 2021
The pyrelational package offers a flexible workflow to enable active learning with as little change to the models and datasets as possible

pyrelational is a python active learning library developed by Relation Therapeutics for rapidly implementing active learning pipelines from data management, model development (and Bayesian approximat

Relation Therapeutics 95 Dec 27, 2022
MIMO-UNet - Official Pytorch Implementation

MIMO-UNet - Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Rethinking Coarse-to-

Sungjin Cho 248 Jan 02, 2023
This repository contains the code for our paper VDA (public in EMNLP2021 main conference)

Virtual Data Augmentation: A Robust and General Framework for Fine-tuning Pre-trained Models This repository contains the code for our paper VDA (publ

RUCAIBox 13 Aug 06, 2022
Repo for the Tutorials of Day1-Day3 of the Nordic Probabilistic AI School 2021 (https://probabilistic.ai/)

ProbAI 2021 - Probabilistic Programming and Variational Inference Tutorial with Pryo Day 1 (June 14) Slides Notebook: students_PPLs_Intro Notebook: so

PGM-Lab 46 Nov 01, 2022
SciPy fixes and extensions

scipyx SciPy is large library used everywhere in scientific computing. That's why breaking backwards-compatibility comes as a significant cost and is

Nico Schlömer 16 Jul 17, 2022
learned_optimization: Training and evaluating learned optimizers in JAX

learned_optimization: Training and evaluating learned optimizers in JAX learned_optimization is a research codebase for training learned optimizers. I

Google 533 Dec 30, 2022