PyContinual (An Easy and Extendible Framework for Continual Learning)

Overview

PyContinual (An Easy and Extendible Framework for Continual Learning)

Easy to Use

You can sumply change the baseline, backbone and task, and then ready to go. Here is an example:

	python run.py \  
	--bert_model 'bert-base-uncased' \  
	--backbone bert_adapter \ #or other backbones (bert, w2v...)  
	--baseline ctr \  #or other avilable baselines (classic, ewc...)
	--task asc \  #or other avilable task/dataset (dsc, newsgroup...)
	--eval_batch_size 128 \  
	--train_batch_size 32 \  
	--scenario til_classification \  #or other avilable scenario (dil_classification...)
	--idrandom 0  \ #which random sequence to use
	--use_predefine_args #use pre-defined arguments

Easy to Extend

You only need to write your own ./dataloader, ./networks and ./approaches. You are ready to go!

Introduction

Recently, continual learning approaches have drawn more and more attention. This repo contains pytorch implementation of a set of (improved) SoTA methods using the same training and evaluation pipeline.

This repository contains the code for the following papers:

Features

  • Datasets: It currently supports Language Datasets (Document/Sentence/Aspect Sentiment Classification, Natural Language Inference, Topic Classification) and Image Datasets (CelebA, CIFAR10, CIFAR100, FashionMNIST, F-EMNIST, MNIST, VLCS)
  • Scenarios: It currently supports Task Incremental Learning and Domain Incremental Learning
  • Training Modes: It currently supports single-GPU. You can also change it to multi-node distributed training and the mixed precision training.

Architecture

./res: all results saved in this folder.
./dat: processed data
./data: raw data ./dataloader: contained dataloader for different data ./approaches: code for training
./networks: code for network architecture
./data_seq: some reference sequences (e.g. asc_random) ./tools: code for preparing the data

Setup

  • If you want to run the existing systems, please see run_exist.md
  • If you want to expand the framework with your own model, please see run_own.md
  • If you want to see the full list of baselines and variants, please see baselines.md

Reference

If using this code, parts of it, or developments from it, please consider cite the references bellow.

@inproceedings{ke2021achieve,
  title={Achieving Forgetting Prevention and Knowledge Transfer in Continual Learning},
  author={Ke, Zixuan and Liu, Bing and Ma, Nianzu and Xu, Hu, and Lei Shu},
  booktitle={NeurIPS},
  year={2021}
}

@inproceedings{ke2021contrast,
  title={CLASSIC: Continual and Contrastive Learning of Aspect Sentiment Classification Tasks},
  author={Ke, Zixuan and Liu, Bing and Xu, Hu, and Lei Shu},
  booktitle={EMNLP},
  year={2021}
}

@inproceedings{ke2021adapting,
  title={Adapting BERT for Continual Learning of a Sequence of Aspect Sentiment Classification Tasks},
  author={Ke, Zixuan and Xu, Hu and Liu, Bing},
  booktitle={Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies},
  pages={4746--4755},
  year={2021}
}

@inproceedings{ke2020continualmixed,
author= {Ke, Zixuan and Liu, Bing and Huang, Xingchang},
title= {Continual Learning of a Mixed Sequence of Similar and Dissimilar Tasks},
booktitle = {Advances in Neural Information Processing Systems},
volume={33},
year = {2020}}

@inproceedings{ke2020continual,
author= {Zixuan Ke and Bing Liu and Hao Wang and Lei Shu},
title= {Continual Learning with Knowledge Transfer for Sentiment Classification},
booktitle = {ECML-PKDD},
year = {2020}}

Contact

Please drop an email to Zixuan Ke, Xingchang Huang or Nianzu Ma if you have any questions regarding to the code. We thank Bing Liu, Hu Xu and Lei Shu for their valuable comments and opinioins.

Owner
Zixuan Ke
Zixuan Ke
This is the official code release for the paper Shape and Material Capture at Home

This is the official code release for the paper Shape and Material Capture at Home. The code enables you to reconstruct a 3D mesh and Cook-Torrance BRDF from one or more images captured with a flashl

89 Dec 10, 2022
Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Phillip Lippe 1.1k Jan 07, 2023
Oriented Response Networks, in CVPR 2017

Oriented Response Networks [Home] [Project] [Paper] [Supp] [Poster] Torch Implementation The torch branch contains: the official torch implementation

ZhouYanzhao 217 Dec 12, 2022
Repository containing the PhD Thesis "Formal Verification of Deep Reinforcement Learning Agents"

Getting Started This repository contains the code used for the following publications: Probabilistic Guarantees for Safe Deep Reinforcement Learning (

Edoardo Bacci 5 Aug 31, 2022
A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

The Alan Turing Institute 6k Jan 08, 2023
Goal of the project : Detecting Temporal Boundaries in Sign Language videos

MVA RecVis course final project : Goal of the project : Detecting Temporal Boundaries in Sign Language videos. Sign language automatic indexing is an

Loubna Ben Allal 6 Dec 21, 2022
Dynamic Environments with Deformable Objects (DEDO)

DEDO - Dynamic Environments with Deformable Objects DEDO is a lightweight and customizable suite of environments with deformable objects. It is aimed

Rika 32 Dec 22, 2022
RobustVideoMatting and background composing in one model by using onnxruntime.

RVM_onnx_compose RobustVideoMatting and background composing in one model by using onnxruntime. Usage pip install -r requirements.txt python infer_cam

Quantum Liu 4 Apr 07, 2022
It's A ML based Web Site build with python and Django to find the breed of the dog

ML-Based-Dog-Breed-Identifier This is a Django Based Web Site To Identify the Breed of which your DOG belogs All You Need To Do is to Follow These Ste

Sanskar Dwivedi 2 Oct 12, 2022
Transformers based fully on MLPs

Awesome MLP-based Transformers papers An up-to-date list of Transformers based fully on MLPs without attention! Why this repo? After transformers and

Fawaz Sammani 35 Dec 30, 2022
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

57 Nov 28, 2022
ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

Snapdragon Lee 2 Dec 16, 2022
CRNN With PyTorch

CRNN-PyTorch Implementation of https://arxiv.org/abs/1507.05717

Vadim 4 Sep 01, 2022
The official implementation of paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks" (IJCV under review).

DGMS This is the code of the paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks". Installation Our code works with Pytho

Runpei Dong 3 Aug 28, 2022
PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our paper

Flow Gaussian Mixture Model (FlowGMM) This repository contains a PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our pa

Pavel Izmailov 124 Nov 06, 2022
Replication of Pix2Seq with Pretrained Model

Pretrained-Pix2Seq We provide the pre-trained model of Pix2Seq. This version contains new data augmentation. The model is trained for 300 epochs and c

peng gao 51 Nov 22, 2022
A very tiny, very simple, and very secure file encryption tool.

Picocrypt is a very tiny (hence "Pico"), very simple, yet very secure file encryption tool. It uses the modern ChaCha20-Poly1305 cipher suite as well

Evan Su 1k Dec 30, 2022
PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With

Amin Rezaei 157 Dec 11, 2022
This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN

Mask-RCNN on Mycobacterium tuberculosis This is an example of object detection on Mycobacterium Tuberculosis using Mask RCNN. Implement of Mask R-CNN

Jun-En Ding 1 Sep 16, 2021
All-in-one Docker container that allows a user to explore Nautobot in a lab environment.

Nautobot Lab This container is not for production use! Nautobot Lab is an all-in-one Docker container that allows a user to quickly get an instance of

Nautobot 29 Sep 16, 2022