A library built upon PyTorch for building embeddings on discrete event sequences using self-supervision

Overview

pytorch-lifestream a library built upon PyTorch for building embeddings on discrete event sequences using self-supervision. It can process terabyte-size volumes of raw events like game history events, clickstream data, purchase history or card transactions.

It supports various methods of self-supervised training, adapted for event sequences:

  • Contrastive Learning for Event Sequences (CoLES)
  • Contrastive Predictive Coding (CPC)
  • Replaced Token Detection (RTD) from ELECTRA
  • Next Sequence Prediction (NSP) from BERT
  • Sequences Order Prediction (SOP) from ALBERT

It supports several types of encoders, including Transformer and RNN. It also supports many types of self-supervised losses.

The following variants of the contrastive losses are supported:

Install from PyPi

pip install pytorch-lifestream

Install from source

# Ubuntu 20.04

sudo apt install python3.8 python3-venv
pip3 install pipenv

pipenv sync  --dev # install packages exactly as specified in Pipfile.lock
pipenv shell
pytest

Demo notebooks

  • Self-supervided training and embeddings for downstream task notebook
  • Self-supervided embeddings in CatBoost notebook
  • Self-supervided training and fine-tuning notebook
  • PySpark and Parquet for data preprocessing notebook

Experiments on public datasets

pytorch-lifestream usage experiments on several public event datasets are available in the separate repo

Comments
  • torch.stack in def collate_feature_dict

    torch.stack in def collate_feature_dict

    ptls/data_load/utils.py

    Hello!

    If the dataloader has a feature called target. And the batchsize is not a multiple of the length of the dataset, then an error pops up on the last batch: "Sizes of tensors must match except in dimension 0". Due to the use of torch.staсk when processing a feature startwith 'target'.

    opened by Ivanich-spb 11
  • Not supported multiGPU option from pytorchlightning.Trainer

    Not supported multiGPU option from pytorchlightning.Trainer

    Try to set Trainer(gpus=[0,1]), while using PtlsDataModule as data module, get such error:

    AttributeError: Can't pickle local object 'PtlsDataModule.__init__.<locals>.train_dataloader'

    opened by mazitovs 1
  • Correct seq_len for feature dict

    Correct seq_len for feature dict

    rec = {
        'mcc': [0, 1, 2, 3],
        'target_distribution': [0.1, 0.2, 0.4, 0.1, 0.1, 0.0],
    }
    

    How to get correct seq_len. true len: 4 possible length: 4, 6 'target_distribution' is incorrect field to get length, this is not a sequence, this is an array

    opened by ivkireev86 1
  • Save categories encodings along with model weights in demos

    Save categories encodings along with model weights in demos

    Вместе с обученной моделью необходимо сохранять обученный препроцессор и разбивку на трейн-тест. Иначе категории могут поехать и сохраненная предобученная модель станет бесполезной.

    opened by ivkireev86 1
  • Documentation index

    Documentation index

    Прототип главной страницы документации. Три секции:

    • описание моделей библиотеки
    • гайд как использовать библиотеку
    • как писать свои компоненты

    Есть краткое описание и ссылки на подробные (которые напишем потом).

    В описании модулей предложена структура библиотеки. Предполагается, что мы эти модули в ближайшее создадим и перетащим туда соответсвующие классы из библиотеки. Старые, модули, которые станут пустыми, удалим. Далее будем придерживаться схемы, описанной в этом документе.

    На ревью предлагается чекнуть предлагаемую структуру библиотеки, названия модулей ну и сам описательный текст документа.

    opened by ivkireev86 1
  • KL cyclostationarity test tools

    KL cyclostationarity test tools

    Test provides a hystogram with self-samples similarity vs. random sample similarity. Shows compatibility with CoLES.

    Think about tests for other frameworks.

    opened by ivkireev86 0
  • Repair pyspark tests

    Repair pyspark tests

    def test_dt_to_timestamp(): spark = SparkSession.builder.getOrCreate() df = spark.createDataFrame(data=[ {'dt': '1970-01-01 00:00:00'}, {'dt': '2012-01-01 12:01:16'}, {'dt': '2021-12-30 00:00:00'} ])

        df = df.withColumn('ts', dt_to_timestamp('dt'))
        ts = [rec.ts for rec in df.select('ts').collect()]
    
      assert ts == [0, 1325419276, 1640822400]
    

    E assert [-10800, 1325...6, 1640811600] == [0, 1325419276, 1640822400] E At index 0 diff: -10800 != 0 E Use -v to get more diff

    ptls_tests/test_preprocessing/test_pyspark/test_event_time.py:16: AssertionError


    def test_datetime_to_timestamp(): t = DatetimeToTimestamp(col_name_original='dt') spark = SparkSession.builder.getOrCreate() df = spark.createDataFrame(data=[ {'dt': '1970-01-01 00:00:00', 'rn': 1}, {'dt': '2012-01-01 12:01:16', 'rn': 2}, {'dt': '2021-12-30 00:00:00', 'rn': 3} ]) df = t.fit_transform(df) et = [rec.event_time for rec in df.select('event_time').collect()]

      assert et[0] == 0
    

    E assert -10800 == 0

    ptls_tests/test_preprocessing/test_pyspark/test_event_time.py:48: AssertionError

    opened by ikretus 0
  • docs. Development guide (for demo notebooks)

    docs. Development guide (for demo notebooks)

    • add current patterns
    • when model training start print message "model training stats, please wait. See tensorboard to track progress", use it with enable_progress=False
    documentation user feedback 
    opened by ivkireev86 0
Releases(v0.5.1)
  • v0.5.1(Dec 28, 2022)

    What's Changed

    • fixed cpc import by @ArtyomVorobev in https://github.com/dllllb/pytorch-lifestream/pull/90
    • add softmaxloss and tests by @ArtyomVorobev in https://github.com/dllllb/pytorch-lifestream/pull/87
    • MLM NSP Module by @mazitovs in https://github.com/dllllb/pytorch-lifestream/pull/88
    • fix test dropout error by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/91

    New Contributors

    • @ArtyomVorobev made their first contribution in https://github.com/dllllb/pytorch-lifestream/pull/90
    • @mazitovs made their first contribution in https://github.com/dllllb/pytorch-lifestream/pull/88

    Full Changelog: https://github.com/dllllb/pytorch-lifestream/compare/v0.5.0...v0.5.1

    Source code(tar.gz)
    Source code(zip)
  • v0.5.0(Nov 9, 2022)

    What's Changed

    • Fix metrics reset by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/72
    • Pandas preprocessing without df copy, faster preprocessing for large datasets by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/73
    • fix in supervised-sequence-to-target.ipynb by @blinovpd in https://github.com/dllllb/pytorch-lifestream/pull/74
    • ptls.nn.PBDropout by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/75
    • tanh for rnn starter by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/76
    • Auc regr metric by @ikretus in https://github.com/dllllb/pytorch-lifestream/pull/78
    • spatial dropout for NoisyEmbedding, LastMaxAvgEncoder, warning for bidir RnnEncoder by @justalge in https://github.com/dllllb/pytorch-lifestream/pull/80
    • Hparam tuning demo. hydra, optuna, tensorboard by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/81
    • tabformer by @justalge in https://github.com/dllllb/pytorch-lifestream/pull/83
    • Supervised Coles Module, trx_encoder refactoring by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/84

    New Contributors

    • @blinovpd made their first contribution in https://github.com/dllllb/pytorch-lifestream/pull/74

    Full Changelog: https://github.com/dllllb/pytorch-lifestream/compare/v0.4.0...v0.5.0

    Source code(tar.gz)
    Source code(zip)
  • v0.4.0(Jul 27, 2022)

    What's Changed

    • Seq encoder refactoring by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/29
    • regr.task ZILNLoss, RMSE, BucketAccuracy by @ikretus in https://github.com/dllllb/pytorch-lifestream/pull/36
    • lighting modules and nn layers refactoring by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/34
    • Demo colab by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/40
    • Fix drop target arrays by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/42
    • feature naming by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/43
    • Update abs_module.py by @justalge in https://github.com/dllllb/pytorch-lifestream/pull/37
    • Extended inference demo by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/45
    • fix import path by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/46
    • Experiments sync by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/50
    • Experiments sync by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/52
    • Target dist by @ikretus in https://github.com/dllllb/pytorch-lifestream/pull/58
    • Data load refactoring by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/60
    • doc update by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/62
    • doc update by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/63

    New Contributors

    • @ikretus made their first contribution in https://github.com/dllllb/pytorch-lifestream/pull/36

    Full Changelog: https://github.com/dllllb/pytorch-lifestream/compare/v0.3.0...v0.4.0

    What's Changed

    • Seq encoder refactoring by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/29
    • regr.task ZILNLoss, RMSE, BucketAccuracy by @ikretus in https://github.com/dllllb/pytorch-lifestream/pull/36
    • lighting modules and nn layers refactoring by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/34
    • Demo colab by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/40
    • Fix drop target arrays by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/42
    • feature naming by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/43
    • Update abs_module.py by @justalge in https://github.com/dllllb/pytorch-lifestream/pull/37
    • Extended inference demo by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/45
    • fix import path by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/46
    • Experiments sync by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/50
    • Experiments sync by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/52
    • Target dist by @ikretus in https://github.com/dllllb/pytorch-lifestream/pull/58
    • Data load refactoring by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/60
    • doc update by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/62
    • doc update by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/63

    New Contributors

    • @ikretus made their first contribution in https://github.com/dllllb/pytorch-lifestream/pull/36

    Full Changelog: https://github.com/dllllb/pytorch-lifestream/compare/v0.3.0...v0.4.0

    What's Changed

    • Seq encoder refactoring by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/29
    • regr.task ZILNLoss, RMSE, BucketAccuracy by @ikretus in https://github.com/dllllb/pytorch-lifestream/pull/36
    • lighting modules and nn layers refactoring by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/34
    • Demo colab by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/40
    • Fix drop target arrays by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/42
    • feature naming by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/43
    • Update abs_module.py by @justalge in https://github.com/dllllb/pytorch-lifestream/pull/37
    • Extended inference demo by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/45
    • fix import path by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/46
    • Experiments sync by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/50
    • Experiments sync by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/52
    • Target dist by @ikretus in https://github.com/dllllb/pytorch-lifestream/pull/58
    • Data load refactoring by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/60
    • doc update by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/62
    • doc update by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/63

    New Contributors

    • @ikretus made their first contribution in https://github.com/dllllb/pytorch-lifestream/pull/36

    Full Changelog: https://github.com/dllllb/pytorch-lifestream/compare/v0.3.0...v0.4.0

    Source code(tar.gz)
    Source code(zip)
  • v0.3.0(Jun 12, 2022)

    More Pythonic Core API: constructor arguments instead of config objects

    What's Changed

    • cpc params by @justalge in https://github.com/dllllb/pytorch-lifestream/pull/9
    • All modules by @justalge in https://github.com/dllllb/pytorch-lifestream/pull/15
    • Mlm pretrain by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/13
    • all encoders and get rid of get_loss by @justalge in https://github.com/dllllb/pytorch-lifestream/pull/19
    • init by @justalge in https://github.com/dllllb/pytorch-lifestream/pull/20
    • Documentation index by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/8
    • Demos api update by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/18
    • loss output correction by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/22
    • Test fixes by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/23
    • readme_demo_link by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/25
    • init by @justalge in https://github.com/dllllb/pytorch-lifestream/pull/26
    • work without logger by @justalge in https://github.com/dllllb/pytorch-lifestream/pull/7
    • trx_encoder refactoring by @ivkireev86 in https://github.com/dllllb/pytorch-lifestream/pull/28

    Full Changelog: https://github.com/dllllb/pytorch-lifestream/compare/v0.1.2...v0.3.0

    Source code(tar.gz)
    Source code(zip)
Owner
Dmitri Babaev
Dmitri Babaev
Plotting points that lie on the intersection of the given curves using gradient descent.

Plotting intersection of curves using gradient descent Webapp Link --- What's the app about Why this app Plotting functions and their intersection. A

Divakar Verma 2 Jan 09, 2022
Neural Radiance Fields Using PyTorch

This project is a PyTorch implementation of Neural Radiance Fields (NeRF) for reproduction of results whilst running at a faster speed.

Vedant Ghodke 1 Feb 11, 2022
Faster RCNN pytorch windows

Faster-RCNN-pytorch-windows Faster RCNN implementation with pytorch for windows Open cmd, compile this comands: cd lib python setup.py build develop T

Hwa-Rang Kim 1 Nov 11, 2022
Inkscape extensions for figure resizing and editing

Academic-Inkscape: Extensions for figure resizing and editing This repository contains several Inkscape extensions designed for editing plots. Scale P

192 Dec 26, 2022
Pytorch0.4.1 codes for InsightFace

InsightFace_Pytorch Pytorch0.4.1 codes for InsightFace 1. Intro This repo is a reimplementation of Arcface(paper), or Insightface(github) For models,

1.5k Jan 01, 2023
RefineGNN - Iterative refinement graph neural network for antibody sequence-structure co-design (RefineGNN)

Iterative refinement graph neural network for antibody sequence-structure co-des

Wengong Jin 83 Dec 31, 2022
A best practice for tensorflow project template architecture.

A best practice for tensorflow project template architecture.

Mahmoud Gamal Salem 3.6k Dec 22, 2022
Fully Connected DenseNet for Image Segmentation

Fully Connected DenseNets for Semantic Segmentation Fully Connected DenseNet for Image Segmentation implementation of the paper The One Hundred Layers

Somshubra Majumdar 84 Oct 31, 2022
Unofficial PyTorch Implementation of AHDRNet (CVPR 2019)

AHDRNet-PyTorch This is the PyTorch implementation of Attention-guided Network for Ghost-free High Dynamic Range Imaging (CVPR 2019). The official cod

Yutong Zhang 4 Sep 08, 2022
Code repo for "RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network" (Machine Learning and the Physical Sciences workshop in NeurIPS 2021).

RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network An official PyTorch implementation of the RBSRICNN network as desc

Rao Muhammad Umer 6 Nov 14, 2022
Code for one-stage adaptive set-based HOI detector AS-Net.

AS-Net Code for one-stage adaptive set-based HOI detector AS-Net. Mingfei Chen*, Yue Liao*, Si Liu, Zhiyuan Chen, Fei Wang, Chen Qian. "Reformulating

Mingfei Chen 45 Dec 09, 2022
La source de mon module 'pyfade' disponible sur Pypi.

Version: 1.2 Introduction Pyfade est un module permettant de créer des dégradés colorés. Il vous permettra de changer chaque ligne de votre texte par

Billy 20 Sep 12, 2021
discovering subdomains, hidden paths, extracting unique links

python-website-crawler discovering subdomains, hidden paths, extracting unique links pip install -r requirements.txt discover subdomain: You can give

merve 4 Sep 05, 2022
A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way :chestnut:

Squirrel Core Share, load, and transform data in a collaborative, flexible, and efficient way What is Squirrel? Squirrel is a Python library that enab

Merantix Momentum 249 Dec 07, 2022
Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images

Keras-ICNet [paper] Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images. Training in progress! Requisites Python 3.6.3 K

Aitor Ruano 87 Dec 16, 2022
SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images.

SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images (IEEE GRSL 2021) Code (based on mmdetection) for SSPNet: Scale Selec

Italian Cannon 37 Dec 28, 2022
ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

ROSITA News & Updates (24/08/2021) Release the demo to perform fine-grained semantic alignments using the pretrained ROSITA model. (15/08/2021) Releas

Vision and Language Group@ MIL 48 Dec 23, 2022
METS/ALTO OCR enhancing tool by the National Library of Luxembourg (BnL)

Nautilus-OCR The National Library of Luxembourg (BnL) started its first initiative in digitizing newspapers, with layout recognition and OCR on articl

National Library of Luxembourg 36 Dec 05, 2022
Einshape: DSL-based reshaping library for JAX and other frameworks.

Einshape: DSL-based reshaping library for JAX and other frameworks. The jnp.einsum op provides a DSL-based unified interface to matmul and tensordot o

DeepMind 62 Nov 30, 2022
Global-Local Attention for Emotion Recognition

Global-Local Attention for Emotion Recognition Requirements Python 3 Install tensorflow (or tensorflow-gpu) = 2.0.0 Install some other packages pip i

Minh Nhat Le 15 Apr 21, 2022